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Abstract. The dependence on text length of the statistical properties of word
occurrences has long been considered a severe limitation on the usefulness of
quantitative linguistics. We propose a simple scaling form for the distribution of
absolute word frequencies that brings to light the robustness of this distribution
as text grows. In this way, the shape of the distribution is always the same, and it
is only a scale parameter that increases (linearly) with text length. By analyzing
very long novels we show that this behavior holds both for raw, unlemmatized
texts and for lemmatized texts. In the latter case, the distribution of frequencies is
well approximated by a double power law, maintaining the Zipf’s exponent value
y = 2 for large frequencies but yielding a smaller exponent in the low-frequency
regime. The growth of the distribution with text length allows us to estimate the
size of the vocabulary at each step and to propose a generic alternative to Heaps’
law, which turns out to be intimately connected to the distribution of frequencies,
thanks to its scaling behavior.
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1. Introduction

Zipf’s law is perhaps one of the best pieces of evidence about the existence of universal physical-
like laws in cognitive science and the social sciences. Classic examples where it applies include
the population of cities, company income and the frequency of words in texts or speech [1]. In
the latter case, the law is obtained directly by counting the number of repetitions, i.e. the absolute
frequency n, of all words in a long enough text, and assigning increasing ranks, r = 1,2, ..., to
decreasing frequencies. When a power-law relation

1
n« r_ﬁ
holds for a large enough range, with the exponent 8 more or less close to 1, Zipf’s law is
considered to be fulfilled (with o denoting proportionality). An equivalent formulation of the
law is obtained in terms of the probability distribution of the frequency n, such that it plays the

role of a random variable, for which a power-law distribution
1
D(n) o« —
nv

should hold, with y =1+ 1/ (taking values close to 2) and D(n) as the probability mass
function of n (or the probability density of n, in a continuous approximation) [2—6]. Note that
this formulation implies performing double statistics (i.e. doing statistics twice), first counting
words to get frequencies and then counting repetition of frequencies to get the distribution of
frequencies.

The criteria for the validity of Zipf’s law are arguably rather vague (long enough text,
large enough range, exponent 8 more or less close to 1). Generally, a long enough text means
a book, a large range can be a bit more than an order of magnitude and the proximity of the
exponent B to 1 translates into an interval (0.7,1.2), or even beyond that [6-8]. Moreover, no
rigorous methods have been usually required for the fitting of the power-law distribution. Linear
regression in double-logarithmic scale is the most common method, either for n(r) or for D(n),
despite the fact that it is well known that this procedure suffers from severe drawbacks and can
lead to flawed results [9, 10]. Nevertheless, once these limitations are assumed, the fulfillment
of Zipf’s law in linguistics is astonishing, being valid no matter the author, style or language
[1, 6, 7]. So, the law is universal, at least in a qualitative sense.
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At a theoretical level, many different competing explanations of Zipf’s law have been
proposed [6], such as random (monkey) typing [11, 12], preferential repetitions or proportional
growth [13—15], the principle of least effort [1, 16—18], and, beyond linguistics, Boltzmann-type
approaches [19] or even avalanche dynamics in a critical system [20]; most of these options have
generated considerable controversy [21-23]. In any case, the power-law behavior is the hallmark
of scale invariance, i.e. the impossibility to define a characteristic scale, either for frequencies
or for ranks. Although power laws are sometimes also referred to as scaling laws, we will make
a more precise distinction here. In short, a scaling law is any function invariant under a scale
transformation (which is a linear dilation or contraction of the axes). In one dimension the only
scaling law is the power law, but this is not true with more than one variable [24]. Note that
in text statistics, other variables to consider in addition to frequency are the text length L (the
total number of words, or tokens) and the size of the vocabulary V; (i.e. the number of different
words, or types).

Somehow related to Zipf’s law is Heaps’ law (also called Herdan’s law [25, 26]),
which states that the vocabulary V; grows as a function of the text length L as a power
law

VLO(La

with the exponent o smaller than one. However, even simple log—log plots of V; versus L do
not show a convincing linear behavior [27] and therefore, the evidence for this law is somewhat
weak (for a notable exception see [5]). Nevertheless, a number of works have derived the
relationship B = 1/« between Zipf’s and Heaps’ exponents [2, 5, 28], at least in the infinite-
system limit [29, 30], using different assumptions.

Despite the relevance of Zipf’s law, and its possible relations with criticality, few systematic
studies about the dependence of the law on system size (i.e. text length) have been carried
out. It was Zipf himself [1, pp. 144] who first observed a variation in the exponent 8 when
the system size was varied. In particular, ‘small’ samples would give 8 < 1, while ‘big’ ones
yielded g > 1. However, that was attributed to ‘undersampling’ and ‘oversampling’, as Zipf
believed that there was an optimum system size under which all words occurred in proportion
to their theoretical frequencies, i.e. those given by the exponent 8 = 1. This increase of 8 with
L has been confirmed later, see [25, 31], leading to the conclusion that the practical usefulness
of Zipf’s law is rather limited [25].

More recently, using rather large collections of books from single authors, Bernhardsson
et al [32] find a decrease of the exponents y and o with text length, in correspondence with
the increase in B found by Zipf and others. They propose a size-dependent word-frequency
distribution based on three main assumptions:

(i) The vocabulary scales with text length as V; o« L*©), where the exponent a(L) itself
depends on the text length. Note however that this is not an assumption in itself, just

notation, and it is also equivalent to writing the average frequency (n) = L/V, as (n(L)) «
L 1—a(L) .

(i1) The maximum frequency is proportional to the text length, i.e. np,x =n(r =1) o L.

(iii) The functional form of the word frequency distribution D, (n) is that of a power law with
an exponential tail, with both the scale parameter c¢(L) and the power-law exponent y (L)
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depending on the text length L. That is
e—n/c(L)

Du(n) = A=

with 1 <y (L) < 2.

Taking c(L) = coL guarantees that n,, & L; moreover, the form of D, (n) implies that,
asymptotically, (n(L)) oc L?>~75) [24], which comparing to assumption (i) leads to

a(L) =y(L)—1,

s0, 0 < a(L) < 1. This relationship between « and y is in agreement with previous results if L
is fixed [2, 29, 30]. It was claimed in [32] that o (L) decreases from 1 to O for increasing L and
therefore y (L) decreases from 2 to 1. The resulting functional form

e~ "/(col)

Dp(n) = AW
is in fact the same functional form appearing in many critical phenomena, where the power-
law term is limited by a characteristic value of the variable, cyL, arising from a deviation
from criticality or from finite-size effects [24, 33—35]. Note that this implies that the tail of the
frequency distribution is not a power law but an exponential one, and therefore the frequency
of most common words is not power-law distributed. This is in contrast with recent studies that
have clearly established that the tail of D, (n) is well modeled by a power law [9, 36]. However,
what is most uncommon about this functional form is the fact that it has a ‘critical’ exponent
that depends on system size. The values of exponents should not be influenced by external
scales. So, here we look for an alternative picture that is more in agreement with typical scaling
phenomena.

Our proposal is that, although the word-frequency distribution D, (n) changes with system
size L, the shape of the distribution is independent of L and V;, and only the scale of D (n)
changes with these variables. This implies that the shape parameters of D, (n) (in particular, any
exponent) do not change with L; only one scale parameter changes with L, increasing linearly.
This is explained in section 2, while section 3 one is devoted to the validation of our scaling
form in real texts, using both plain words and their corresponding lemma forms; in the latter
case an alternative to Zipf’s law can be proposed, consisting of a double power-law distribution
(which is a distribution with two power-law regimes that have different exponents). Our findings
for words and lemmas suggest that the previous observation that the exponent in Zipf’s law
depends on text length [25, 31, 32], might be an artifact of the increasing weight of a second
regime in the distribution of frequencies beyond a certain text length. Section 4 investigates the
implications of our scaling approach for Heaps’ law. Although the scaling ansatz we propose
has a counterpart in the rank-frequency representation, we prefer to illustrate it in terms of the
distribution of frequencies, as this approach has been deemed more appropriate from a statistical
point of view [36].

2. The scaling form of the word-frequency distribution

Let us come back to the rank-frequency relation, in which the absolute frequency n of each
type is a function of its rank r. Defining the relative frequency as x = n/L and inverting the
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relationship, we can write
r=Gp(x).

Note that here we are not assuming a power-law relationship between r and x, just a generic
function G, which may depend on the text length L. Instead of the three assumptions
introduced by Bernhardsson et al we just need one assumption, which is the independence
of the function G, with respect to L; so

r=G(n/L). (D

This turns out to be a scaling law, with G (x) a scaling function. It means that if in the first 10 000
tokens of a book there are five types with relative frequency larger than or equal to 2%, that is,
G (0.02) = 5, then this will still be true for the first 20 000 tokens, and for the first 100 000 and
for the whole book. These types need not necessarily be the same ones, although in some cases
they might be. In fact, instead of assuming as in [32] that the frequency of the most used type
scales linearly with L, what we assume is just that this is true for all types, at least on average.
Notice that this is not a straightforward assumption, as, for instance [5], considers instead that
n is just a (particular) function of r/ V..

Now let us introduce the survivor function or complementary cumulative distribution
function S;(n) of the absolute frequency, defined in a text of length L as S, (n) =
Prob[frequency > n]. Note that, estimating from empirical data, S; (n) turns out to be essentially
the rank, but divided by the total number of ranks, V,, i.e. S, (n) =r/V,. Therefore, using our
ansatz for r we get

G(n/L)
1/

Within a continuous approximation the probability mass function of n, Dy(n)=
Prob[frequency = n], can be obtained from the derivative of S, (n):

dS.(n) gn/L)
on LV,

Sp(n) =

Dy(n) =—

: 2)

where g is minus the derivative of G, i.e. g(x) = —G’(x). If one does not trust the continuous
approximation, one can write Dy (n) = S;(n) — Sy (n + 1) and perform a Taylor expansion, for
which the result is the same, but with g(x) >~ —G’(x). In this way, we obtain simple forms for
S (n) and Dy (n), which are analogous to standard scaling laws, except for the fact that we have
not specified how V; changes with L. If Heaps’ law holds, V; o< L*, we recover a standard
scaling law, D; (n) = g(n/L)/L'**, which fulfills invariance under a scaling transformation, or,
equivalently, fulfills the definition of a generalized homogeneous function [24, 37]

DALL()Lnn) = ApDy(n),
where A, , A, and A, are the scale factors, related in this case through
A=A =X

and
1

= PR :

A
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Table 1. Total text length and vocabulary before (L, Vi) and after (Lt((l))t, Vtg[))
the lemmatization process, for all the books considered (including also their
author, language and publication year). The text length for lemmas is shorter
than for words because for a number of word tokens their corresponding lemma
type could not be determined, and they were ignored.

Title Author Language Year Lot Viot Lf(l))t th)lt)
Artamene Scudéry siblings French 1649 2078437 25161 1737556 5008
Clarissa Samuel Richardson  English 1748 971294 20490 940967 9041
Don Quijote Miguel de Cervantes Spanish 1605-1615 390436 21180 378664 7432
La Regenta L Alas ‘Clarin’ Spanish 1884 316358 21870 309861 9900
Le Vicomte de Bragelonne A Dumas (father) French 1847 693947 25775 676252 10744
Moby-Dick Herman Melville English 1851 215522 18516 204094 9141
Ulysses James Joyce English 1918 268144 29448 242367 12469

However, in general (if Heaps’ law does not hold), the distribution D (n) still is invariant under
a scale transformation but with a different relation for A p, which is

AV
So, Dy (n) is not a generalized homogeneous function, but presents an even more general form.
In any case, the validity of the proposed scaling law, equation (1), can be checked by performing

a very simple rescaled plot, displaying LV, D, (n) versus n/L. A resulting data collapse support
the independence of the scaling function with respect to L. This is undertaken in section 3.

Ap

3. Data analysis results

To test the validity of our predictions, summarized in equation (2), we analyze a corpus of
literary texts, comprised by seven large books in English, Spanish and French (among them,
some of the longest novels ever written, in order to have as much statistics of homogeneous
texts as possible). In addition to the statistics of the words in the texts, we consider the statistics
of lemmas (roughly speaking, the stem forms of the word; for instance, dog for dogs). In the
lemmatized version of each text, each word is substituted by its corresponding lemma, and
the statistics are collected in the same way as they are collected for word forms. Appendix A
provides detailed information on the lemmatization procedure, and table 1 summarizes the most
relevant characteristics of the analyzed books.

First, we plot the distributions of word frequencies, D;(n) versus n, for each book,
considering either the whole book or the first L/L, fraction, where L, is the real, complete
text length (i.e. if L = Ly /2 we consider just the first half of the book, no average is performed
over parts of size L). For a fixed book, we observe that different L leads to distributions with
small but clear differences, see figure 1. The pattern described by Bernhardsson er al (equivalent
to Zipf’s findings for the change of the exponent ) seems to hold, as the absolute value of the
slope in log—log scale (i.e. the apparent power-law exponent ) decreases with increasing text
length.

However, a scaling analysis reveals an alternative picture. As suggested by equation (2),
plotting LV, D, (n) against n/L for different values of L yields a collapse of all the curves onto
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Figure 1. Density of word frequencies D, (n) (y-axis) against absolute frequency
n (x-axis), for six different books, taking text length L = Ly /10, L /107,
Lii/10°55, ..., L. The slope seems to decrease with text length.

a unique L-independent function for each book, which represents the scaling function g(x).
Figure 2 shows this for the same books and parts of the books as in figure 1. The data collapse
can be considered excellent, except for the smallest frequencies. For the largest L the collapse is
valid up to n =~ 3 if we exclude La Regenta, which only collapses for about n > 6. So, our scaling
hypothesis is validated, independently of the particular shape that g(x) takes. Note that g(x) is
independent of L but not the book, i.e. each book has its own g(x), different from the rest. In any
case, we observe a slightly convex shape in log—log space, which leads to the rejection of the
power-law hypothesis for the whole range of frequencies. Nevertheless, the data does not show
any clear parametric functional form. A double power law, a stretched exponential, a Weibull

New Journal of Physics 15 (2013) 093033 (http://www.njp.org/)


http://www.njp.org/

8 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

T T T T T T T T T T
100 F a_ L=971294, V=20490 —&— F L-aesias, v-2oass > 4 10'°
a N L=612846, V=16123 1 \& L=169187, V=21369 1
® L=386680, V=12497 R L=106750, V=14934
108 F 1L=243979, V= 9711 I % L= 67355, V=10881 3108
L=153940, V= 7853 L= 42498, V= 7796
E L= 97130, V= 6331 —— F A\, L= 26814, V= 5889 —— 7
6 ) 6
10° F E3 310
10* F ¥ 1 10*
Clarissa (English) F  Ulysses (English) I
2 2
107 F E3 3 10
1 1 1 1 1 g 1 1 1 1 1
T T T T T T T T T T
10]0 3 a_ L=693947, V=25775 —&— F L=316358, V=21870 —2— 3 10]0
r k&\,«\” L=437851, V=20760 1 \& L=199609, V=18014 ]
Sy L=276266, V=16652 G L=125045, V=14484
108 E ) L=174312, V=13389 I R L= 79466, V=11261 1108
L=109984, V=10465 h L= 50139, V= 8650
3 L= 69395, V= 8235 —+— 8 31636, V= 6656 —+—
10° F + 1 10°
4 - 4
107 F \ E3 310
Bragelonne (French) ¥ ¥ Regenta (Spanish) 3
2 2
107 F E3 3 10
1 1 1 1 1 1 1 1 1 1
& T T T T T T T T T T 10
100 | Sag L=2078437, V=25161 —&— ¥ L=390436, V=21180 —— 7 10
r = L=1311407, V=20926 I &\&\ L=246349, V=16390 ]
L= 827444, V=17029 S L=155436, V=12385
108 L L= 522082, V=14237 I L= 98073, V= 9845 h 108
L= 329412, V=11606 ’ L= 61880, V= 7722
3 S, L= 207845, V= 9328 —+— F N L= 39044, V= 5982 —— 3
10° F ' + 1 10°
4 4
107 F E3 310
Artamene (French) . 3 Quijote (Spanish) E
2 2
10° E3 3 10
1 1 1 1 1 1 1 1 1 1
—6 -5 -4 -3 —2 —6 -5 -4 -3 —2
10 10 10 10 10 10 10 10 10 10

Figure 2. Rescaled densities LV, D, (n) (y-axis) against relative frequency n/L
(x-axis), for the same books and fractions of text as in figure 1. The rescaled
densities collapse onto a single function, independently of the value of L,
validating our proposed scaling form for D, (n) (equation (2)) and making it
clear that the decrease of the log—log slope with L is not a consequence of a
genuine change in the scaling properties of the distribution.

or a lognormal tail could be fit to the distributions. This is not incompatible with the fact that
the large n tail can be well fit by a power law (the Zipf’s law), for more than two orders of
magnitude [36].

Things turn out to be somewhat different after the lemmatization process. The scaling
ansatz is still clearly valid for the frequency distributions, see figure 3, but with a different kind
of scaling function g(x), with a more defined characteristic shape, due to a more pronounced
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Figure 3. Same rescaled distributions as in previous figure (LV, D (n) versus
n/L), but for the frequencies of lemmas. The data collapse guarantees the
fulfillment of the scaling law also in this case. The fit resulting from the double
power-law distribution, equation (3), is also included.

log—log curvature or convexity. In fact, close examination of the data leads us to conclude that
the lemmatization process enhances the goodness of the scaling approximation, specially in
the low-frequency zone. It could be reasoned that, as lemmatized texts have a significantly
reduced vocabulary compared to the original ones, but the total length remains essentially
the same, they are somehow equivalent to much longer texts, if one considers the length-to-
vocabulary ratio. Although this matter needs to be further investigated, it supports the idea that
our main hypothesis, the scale-invariance of the distribution of frequencies, holds more strongly
for longer texts.
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Table 2. Values of the parameters n,, ¥y and a for the lemmatized versions
(indicated with the superscript (1)) of the seven complete books. The fits are
performed numerically through MLE, while the standard deviations come from
Monte Carlo simulations, see appendix B.

Title ng oy, y o, a*to,
Artameéne®” 129.74+12.6 1.8074+0.026 (4.65+0.91)x 1074
Clarissa® 32.70+£2.17 1.864+0.021 (1.40+0.24) x 10~*

Don Quijote®  7.914+0.75 1.82740.020 (1.3540.22) x 10~*
LaRegenta®  9.4540.66 1.98340.021 (3.68+0.62) x 107>
Bragelonne®  14.56+1.23 1.86640.018 (9.1041.37) x 1073
Moby-Dick®  82140.53 2.05040.024 (2.4240.47) x 107>
Ulysses 538+0.31 2.020+0.017 (1.794+0.28) x 1073

Due to the clear curvature of g(x) in the lemmatized case, we go one step further and
propose a concrete function to fit these data, namely

k
gy = —— . (3)

This function has two free parameters, a and y (with y > 1 and a > 0), and behaves as a
double power law, that is, for large x, g(x) ~ x~7 (we still have Zipf’s law), while for small
x, g(x) ~ x~!. The transition point between both power-law tails is determined by a (more

precisely, by aﬁ), and k is fixed by normalization. But an important issue is that it is not g(x)
which is normalized to one but D (n). We select a power-law with exponent one for small x
for three reasons: firstly, in order to explore an alternative to the power law in the V; versus L
relation (which is not clearly supported by the data, see next section); secondly, to allow for a
better comparison of our results and those of [32]; thirdly, to keep the number of parameters
minimum. Thus, we do not look for the most accurate fit but for the simplest description of the
data. 1

Then, defining n, = a»-' L, the corresponding word-frequency density (or, more properly,
lemma-frequency density or type-frequency density) turns out to be

1
n (1 + (n/na)V—l)

Dy (n) “4)

with n, the scale parameter (recall that the scale parameter of g(x) was aﬁ).

The data collapse in figure 3 and the good fit imply that the Zipf-like exponent y does
not depend on L, but the transition point between both power laws, n,, obviously does. Hence,
as L grows the transition to the ~ n~” regime occurs at higher absolute frequencies, given by

n,, but fixed relative frequencies, given by a7 7. In table 2 we report the fitted parameters for
all seven books, obtained by maximum likelihood estimation (MLE) of the frequencies of the
whole books, as well as Monte Carlo estimates of their uncertainties. We have confirmed the
stability of y fitting only a power-law tail from a fixed common relative frequency, for different
values of L [36].
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Regarding the low-frequency exponent, one could find a better fit if the exponent was
not fixed to be one; however, our data does not allow this value to be well constrained. A
more important point is the influence of lemmatization errors in the characteristics of the low-
frequency regime. Although the tools we use are rather accurate, rare words are likely to be
assigned a wrong lemma. This limitation is intrinsic to current computational tools and has to
be considered as a part of the lemmatization process. Nevertheless, the fact that the behavior at
low frequencies is robust in front of a large variation in the percentage of lemmatization errors
implies that our result is a genuine consequence of the lemmatization. See appendix A for more
details.

Although double power laws have been previously fit to rank-frequency plots for
unlemmatized multi-author corpora [27, 38, 39], the resulting exponents for large ranks (low
frequencies) are different than the ones obtained for our lemmatized single-author texts. Note
that [27] also proposed that the crossover between both power laws happened for a constant
number of types, around 7900, independently of corpus size. This corresponds indeed to
r =7900 and therefore, from equation (1), to a fixed relative frequency. This is certainly in
agreement with our results, supporting the hypothesis that rank-frequency plots and frequency
distributions are stable in terms of relative frequency.

4. An asymptotic approximation of Heaps’ law

Coming back to our scaling ansatz, equation (2), the normalization of D (n) will allow us
to establish a relationship between the word-frequency distribution and the growth of the
vocabulary with text length. In the continuous approximation

1= [ ouman= - [Tewn G = [ amar= 6 (4)
= n)an = — gn _ = gx)dx = — -1,
1 r Vi i L Vi)t Vi L
where we have used the previous relation g(x) = —G’'(x), and have additionally imposed

G (00) =0, for which it is necessary that g(x) decays faster than a power law with exponent

one. So,
1

This just means, compared to equation (1), that the number of types with relative frequency
greater or equal than 1/L is the vocabulary size Vi, as this is the largest rank for a text of
length L. It is important to notice the difference between saying that G, (1/L) = V;, which is
a trivial statement, and stating that G(1/L) = V,, which provides a link between Zipf’s and
Heaps’ law, or, more generally, between the distribution of frequencies and the vocabulary
growth, by approximating the latter by the former. The quality of such an approximation will
depend, of course, on the goodness of the scale-invariance approximation. In the usual case of a
power-law distribution of frequencies extending to the lowest values, g(x) o< 1/x7, with y > 1,
then G(x) o 1/x7~!, which turns into Heaps’ law, V; o< L%, with o« = y — 1, in agreement with
previous research [2, 5, 29, 30, 32].

However, this power-law growth of V; with L is not what is observed in texts, in general.
Due to the accurate fit that we can achieve for lemmatized texts, we can explicitly derive an
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Figure 4. The actual curve V; (solid black with triangles) for the lemmatized
version of the book Artamene, together with the curves V;, = G(1/L) obtained
by using the empirical inverse of the rank-frequency plot, r = G(n/L), with
L; = L/10©=9/5 (colors), and the analytical expression (7) with parameters
determined from the fit of D, (n), equation (6) (dashed black).

asymptotic expression for V; given our proposal for g(x). As we have just shown, g(x) is not
normalized to one, rather, f IO/OL g(x)dx = V.. Hence, substituting g(x) from equation (2) and

integrating
o k k [ ax77
V., = ——dx = - —dx =
1/L X(a'l'.xy_l) a 1/L Cl.xl_y+1

k o)
= —1n(ax1’7’+1)‘ =

-1
i In(aL? ' +1). (6)

e a(y —1)

In this case V, is not a power law, and behaves asymptotically as ocIn L. This is a direct
consequence of our choice for the exponent 1 in the left-tail of g(x). Indeed, it seems clear that
the vocabulary growth curve greatly deviates from a straight line in log—log space, for it displays
a prominent convexity, see figure 4 as an example. Nevertheless, the result from equation (6) is
not a good fit either, due to a wrong proportionality constant. This is caused by the continuous
approximation in equation (6).

For an accurate calculation of V;, we must treat our variables as discrete and compute
discrete sums rather than integrals. In the exact, discrete treatment of D, (n), equation (6) must
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be rewritten as

L tot

=— > , (7

where we have used the fact that S, (n') =3, Dr,(n), with n’ = L/L (notice that in
the discrete case, g(x) # —G’(x)). This is consistent with the fact that, indeed, the maximum
likelihood parameters y and a have been computed assuming a discrete probability function
(see appendix B), and so has the normalization constant. We would like to stress that no fit is
performed in figure 4, that is, the constant k£ in g(x) is directly derived from the normalizing
constant of Dy (n), and depends only on y and a.

5. Conclusions

In summary, we have shown that, contrary to claims in previous research [25, 31, 32], Zipf’s
law in linguistics is extraordinarily stable under changes in the size of the analyzed text. A
scaling function g(x) provides a constant shape for the distribution of frequencies of each text,
Dy (n), no matter its length L, which only enters into the distribution as a scale parameter
and determines the size of the vocabulary V;. The apparent size-dependent exponent found
previously seems to be an artifact of the slight convexity of g(x) in a log—log plot, which is
more clearly observed for very small values of x, accessible only for the largest text lengths.
Moreover, we find that in the case of lemmatized texts the distribution can be well described
by a double power law, with a large-frequency exponent y that does not depend on L, and a
transition point n, that scales linearly with L. The small-frequency exponent is different than
the ones reported in [27, 38] for non-lemmatized corpora. Further, the stability of the shape of
the frequency distribution allows one to predict the growth of vocabulary size with text length,
resulting in a generalization of the popular Heaps’ law.

The robustness of Zipf-like parameters under changes in system size opens the way to more
practical applications of word statistics. In particular, we provide a consistent way to compare
statistical properties of texts with different lengths [40]. Another interesting issue would be the
application of the same scaling methods to other fields in which Zipf’s law has been proposed
to hold, as economics and demography, for instance.
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Table A.1. Coverage of the vocabulary by the dictionary in each language, both
at the type and at the token level. Remember that we distinguish between a word
type (corresponding to its orthographic form) and its tokens (actual occurrences

in text).

Title Types (%) Tokens (%)
Clarissa 68.0 96.9
Moby-Dick 70.8 94.7
Ulysses 58.6 90.4
Don Quijote 81.3 97.0
La Regenta 89.5 97.9
Artamene 43.6 83.6
Bragelonne 89.8 97.5
Seitsemén v. 89.8 95.4
Kevit jat. 96.2 98.3
Vanhempieni r. 96.5 98.5
Average 78.4 95.0

Appendix A. Lemmatization

To analyze the distribution of frequencies of lemmas, the texts needed to be lemmatized. To
manually lemmatize the words would have exceeded the possibilities of this project, so we
proceeded to automatic processing with standard computational tools: FreeLing® for Spanish
and English and TreeTagger [41] for French. The tools carry out the following steps:

1. Tokenization. Segmentation of the texts into sentences and sentences into words (tokens).

2. Morphological analysis. Assignment of one or more lemmas and morphological
information (tag) to each token. For instance, found in English can correspond to the past
tense of the verb find or to the base form of the verb found. At this stage, both are assigned
whenever the word form found is encountered.

3. Morphological disambiguation. An automatic tagger assigns the single most probable
lemma and tag to each word form, depending on the context. For instance, in I found the
keys the tagger would assign the lemma find to the word found, while in He promised to
found a hospital, the lemma found would be preferred.

All these steps are automatic, such that errors are introduced at each step. However, the
accuracy of the tools is quite high (e.g. around 95-97% at the token level for morphological
disambiguation), so a quantitative analysis based on the results of the automatic process can
be carried out. Also note that step 2 is based on a pre-existing dictionary (of words, not of
lemmas, also called a lexicon): only the words that are in the dictionary are assigned a reliable
set of morphological tags and lemmas. Although most of the tools used heuristically assign
tag and/or lemma information to words that are not in the dictionary, we only count tokens of
lemmas for which the corresponding word types are found in the dictionary, so as to minimize
the amount of error introduced by the automatic processing. This comes at the expense of losing
some data. However, the dictionaries have quite a good coverage of the vocabulary, particularly
at the token level, but also at the type level (see table A.1). The exceptions are Ulysses, because

> FreeLing (http://nlp.lsi.upc.edu/freeling).
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of the stream of consciousness prose, which uses many non-standard word forms, and Artamene,
because 17th century French contains many word forms that a dictionary of modern French does
not include.

Appendix B. Maximum likelihood fitting

The fitted values of table 2 have been obtained by MLE. This well-known procedure consists
firstly in computing the log-likelihood function £, which in our case reads

1 Vi 1 VL 1
L= — In Dp(n;))=In K — — ln(n,-(b+n,?/_ )>

with n; the V, values of the frequency and the normalization constant K in the discrete case
equal to
-1

Nmax 1
K = _
nz:; n(b+nr-1

Note that we have reparameterized the distribution compared to the main text, introducing
b=n?"'=aL”"'. Then, £ is maximized with respect to the parameters y and b; this has
been done numerically using the simplex method [42]. The error terms o, and o;, representing
the standard deviation of each estimator, are computed from Monte Carlo simulations. From the
resulting maximum-likelihood parameters y* and b*, synthetic data samples are simulated, and
the MLE parameters of these samples are calculated in the same way; their fluctuations yield
o, and o,. We stress that no continuous approximation has been made, that is, the simulated
data follows the discrete probability function D, (n) (this is done using the rejection method,
see [36, 43] for details for a similar case). In a summarized recipe, the procedure simply is:

numerically compute the MLE parameters, y* and b*;
draw M datasets, each of size V;, from the discrete probability function D, (n; y*, b*);
for each datasetm =1, ..., M, compute the MLE parameters y™, b™;

L=

compute the standard deviations o, and o}, of the sets {y™}¥_, and {p"})_,;

The standard deviations of n, and a are computed in the same way using their relationship
tob and y.
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