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Abstract

The thresholding of time series of activity or intensity is frequently used to define and differentiate
events. This is either implicit, for example due to resolution limits, or explicit, in order to filter certain
small scale physics from the supposed true asymptotic events. Thresholding the birth—death process,
however, introduces a scaling region into the event size distribution, which is characterized by an
exponent that is unrelated to the actual asymptote and is rather an artefact of thresholding. As a result,
numerical fits of simulation data produce a range of exponents, with the true asymptote visible only in
the tail of the distribution. This tail is increasingly difficult to sample as the threshold is increased. In
the present case, the exponents and the spurious nature of the scaling region can be determined
analytically, thus demonstrating the way in which thresholding conceals the true asymptote. The
analysis also suggests a procedure for detecting the influence of the threshold by means of a data
collapse involving the threshold-imposed scale.

1. Introduction

Thresholding is a procedure applied to (experimental) data either deliberately, or effectively because of device
limitations. The threshold may define the onset of an event and/or an effective zero, such that below the
threshold the signal is regarded as 0. An example of thresholding is shown in figure 1. Experimental data often
comes with a detection threshold that cannot be avoided, either because the device is insensitive below a certain
signal level, or because the signal cannot be distinguished from noise. The quality of a measurement process is
often quantified by the noise to signal ratio, with the implication that high levels of noise lead to poor (resolution
of the) data. Often, the rationale behind thresholding is to weed out small events which are assumed irrelevant
on large scales, thereby retaining only the asymptotically big events which are expected to reveal (possibly
universal) large-scale physics.

Most, if notall, of physics is due to some basic interactions that occur on a ‘microscopic length scale’, say the
interaction between water droplets or the van der Waals forces between individual water molecules. These
length scales separate different realms of physics, such as between micro-fluidics and molecular physics or
between molecular physics and atomic physics. However, these are not examples of the thresholds we are
concerned with in the following. Rather, we are interested in an often arbitrary microscopic length scale well
above the scale of the microscopic physics that governs the phenomenon we are studying, such as the
spatiotemporal resolution of a radar observing precipitation (which is much coarser than the scale set by
microfluidics), or the resolution of the magnetometer observing solar flares (which is much coarser than the
scale set by atomic physics and plasma magnetohydrodynamics).

Such thresholds often come down to the device limitations of the measuring apparatus, the storage facilities
connected to it, or the bandwidth available to transmit the data. For example, the earthquake catalogue of
Southern California is only complete above magnitude 3, even though the detection-threshold is around
magnitude 2 [1]. One fundamental problem is the noise-to-signal ratio mentioned above. Even if devices were to
improve to the level where the effect of noise can be disregarded, thresholding may still be an integral part of the

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft


http://dx.doi.org/10.1088/1367-2630/17/4/043066
mailto:fontclos@crm.cat
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/4/043066&domain=pdf&date_stamp=2015-04-30
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/4/043066&domain=pdf&date_stamp=2015-04-30
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

NewJ. Phys. 17 (2015) 043066 F Font-Clos et al

n(g)

30 .............................................................

20 Y LY S

10 -l W V1" A T

0 100 200 300 400 500 600 9

Figure 1. Example of thresholding of a time series. An event begins when the signal exceeds the threshold (dotted lines,

h = 10, 20, 30) and ends as soon as the signal falls below the threshold. Increasing levels of the threshold lead (non-monotonically) to
different numbers of events and, provided the signal eventually ends, monotonically smaller total event durations. The main focus of
this paper is on the statistics of the individual event durations, as exemplified by the two intervals for the intermediate threshold.

measurement. For example, the distinction between rainfall and individual drops requires a separation of
microscale and macroscale which can be highly inhomogeneous [2]. Solar flares, meanwhile, are defined to start
when the solar activity exceeds the threshold and end when it drops below, but the underlying solar activity never
actually ceases [3].

Thresholding has also played an important role in theoretical models, such as the Bak—Sneppen model [4] of
self-organized criticality [5], where the scaling of the event-size distribution is a function of the threshold [6]
whose precise value was the subject of much debate [7, 8]. Finite size effects compete with the threshold-
imposed scale, which has been used in some models to exploit correlations and predict extreme events [9].

Often, thresholding is tacitly assumed to be ‘harmless’ for the (asymptotic) observables of interest and
beneficial for the numerical analysis. We will argue in the following that this assumption may be unfounded: the
very act of thresholding can distort the data and the observables derived from it. To demonstrate this, we will
present an example of the effect of thresholding by determining the apparent scaling exponents of a simple
stochastic process, the birth—death process (BDP). We will show that thresholding obscures the asymptotic
scaling region by introducing an additional prior scaling region, solely as an artefact. Owing to the simplicity of
the process, we can calculate the exponents, leading order amplitudes and the crossover behaviour analytically,
in excellent agreement with simulations. In doing so, we highlight the importance of sample size since, for small
samples (such as might be accessible experimentally), only the ‘spurious’ threshold-induced scaling region that
governs the process at small scales may be accessible. Finally, we discuss the consequences of our findings for
experimental data analysis, where detailed knowledge of the underlying process may not be available, usually the
mechanism behind the process of interest is unclear, and hence such a detailed analysis is not feasible. But by
attempting a data collapse onto a scaling ansatz that includes the threshold-induced scale, we indicate how the
effects of thresholding can be revealed.

The outline of the paper is as follows: in section 2 we introduce the model and the thresholding applied to it.
To illustrate the problems that occur when thresholding real data, we analyse in detail some numerical data. The
artefact discovered in this analysis finds explanation in the theory present in section 3. We discuss these findings
and suggest ways to detect the problem in the final section.

2. Model

In order to quantify numerically and analytically the effect of thresholding, we study the BDP [10] with
Poissonian reproduction and extinction rates that are proportional to the population size. More concretely, we
consider the population size n(g) at (generational) time g > 0. Each individual in the population reproduces
and dies with the same rate of 1/2 (in total unity, so that there are n1(g) birth or death events or ‘updates’ per time
unit on average); in the former case (birth) the population size increases by 1, in the latter (death) it decreases by
1. The state n (g) = 0 isabsorbing [11]. Because the instantaneous rate with which the population n(g) evolves is
n(g) itself, the exponential distributions from which the random waiting times between events are drawn are
themselves parameterized by a random variable, n(g).

Because birth and death rates balance each other, the process is said to be at its critical point [12], which has
the peculiar feature that the expectation of the population is constant in time, (1 (g) ) = n(g,), where - )
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Figure 2. (a): the PDF P% (g; h) of the survival time g, of a thresholded BDP, with a threshold of i = 100, estimated from Monte Carlo
simulations using a limited sample size of ' = 10°. Fitting a power law yields an exponent of 7, = 1.52(3) over the range

[0.031, 1.259 x 10°], witha p-value of 0.71. (b): same as above, but using a sample size of N = 10'°. In this case, two power laws can
be fitted in two different regimes: below g, = 8zh, we find 7 = 1.50070(2) in the (fixed) range [10~2, 10°], while above gy, the fit
leads to 7, = 1.998(4) over the range [1.99 x 10°, 3.16 x 10%], witha p-value of 0.55. Monte Carlo simulations are shown as symbols,
while the small (large) regime power-law fit is plotted with full black lines, and the fitted range marked with red (blue) shading.

denotes the expectation and 7 (g, ) is the initial condition, set to unity in the following. This constant expectation
is maintained by increasingly fewer surviving realizations, as each realization of the process terminates almost
surely. We therefore define the survival time as the time g, — g, such thatn(g) > Oforall g, < g < g and

n(g) = Oforall g > g.. For simplicity, we may shift times to g, = 0, so that g; itselfis the survival time. Itis a
continuous random variable, whose probability density function (PDF) is well known to have a power law tail in
large times, P%:(g,) « gs_2 [12, as in the branching process].

In the following, we will introduce a threshold, which mimics the suppression of some measurements either
intentionally or because of device limitations. For the BDP this means that the population size (or, say, ‘activity’)
below a certain, prescribed level, h, is treated as 0 when determining survival times. In the spirit of [3, also solar
flares, 13], the threshold allows us to distinguish events, which, loosely speaking, start and end whenever n(g)
passes through h.

Explicitly, events start at go when lim._,g+n (g, — €) = handn(g,) = h + 1. Theyend at g, when
n(g,) = h,withthe condition n(g) > hforall g, < ¢ < g.. Thisisillustrated in figures 1 and 4. No thresholding
takes place (i.e. the usual BD process is recovered) for h = 0, in which case the initial conditionis 1 (g,) = 1and
termination takes place at g;when n(g,) = 0.For & > 0 one may think of n(g) as an ‘ongoing’ time series which
never ceases and which may occasionally ‘cross’ h from below (starting the clock), returning to s some time later
(stopping the clock). In a numerical simulation one would start n(g) from n (g,) = h 4+ 1at g, = 0 and wait for
n(g) toarriveat n(g) = h from above. The algorithm may be summarized as

for i=1..N do
n < h+1
§<0
while n > hdo
g < & +&n)
n < n+b
end while
end for

where ¢ (1) is an exponential random variable with rate , and b stands for a random variable that takes the
values {—1, 1} with probability 1/2. In our implementation of the algorithm, all random variables are handled
with the GNU Scientific Library [14].

2.1.Numerics and data analysis
Monte-Carlo runs of the model reveal something unexpected: The exponent of the PDF of the thresholded BDP

appears to change from P4 (g ) « gs_2 ath=0to P%(g,) gs_3 "> at h =100 or, in fact, any reasonably large

h 2 10. Figure 2 shows P% (g, ) for the case of h = 100 and two different sample sizes, N} = 10 and N, = 10",
corresponding to ‘scarce data’ and ‘abundant data’, respectively. In the former case, the exponent of the PDF is
estimated tobe 7, = 1.52(3) & 3/2;in the latter, the PDF splits into two scaling regimes, with exponents
% = 1.50070(2) =~ 3/2and y, = 1.998(4) ~ 2. This phenomenon can be investigated systematically for
different sample sizes N and thresholds h.

We use the fitting procedure introduced in [ 15], which is designed not only to estimate the exponent, but to
determine the range in which a power law holds in an objective way. It is based on maximum likelihood

3



I0OP Publishing NewJ. Phys. 17 (2015) 043066 F Font-Clos et al

2.1}F

[\V]

1.5 febi 2
102 10 10* 10° 106 107 10% 10° 10%0 101
N

1.4

Figure 3. Estimated large scale exponent f, for different thresholds # and sample size N'. The error bars correspond to one standard
deviation and are inversely proportional to the number of data within the fitted range. Inset: estimated large scale exponent 7, asa
function of a ‘rescaled sample size’ N'/h.

methods, the Kolmogorov—Smirnov (KS) test and Monte Carlo simulations of the distributions, see appendix A
for details. In figure 3 we show the evolution of the estimated large scale exponent, 3, for different A and for
different h. The fits are made by assuming that there is a true power law in a finite range [g, b]. For values of the
exponent between 1.5 and 2 larger error bars are observed. For these cases, less data is fitted but the fitting range
is always at least two orders of magnitude wide.

Itis clear from figure 3 that NV has to be very large in order to see the true limiting exponent. Even the
smallest h investigated, h = 20, needs a sample size of at least N = 107, while for & = 5000 the correct
exponent is not found with less than about N = 10'°. It is natural to ask how large the applied thresholds are
compared to the average signal amplitude A or maximum M. Focusing on the case shown in figure 2(a), where
h=100and N = 10% wefind that h ~ 0.07(A) =~ 0.02(M), so that in this sense, the thresholds can be
regarded as ‘small’.

The mere introduction of a threshold therefore changes the PDF of events sizes significantly. It introduces a
new, large scaling regime, with an exponent that is misleadingly different from that characterizing large scale
asymptotics. In fact, for small sample sizes (N, = 10°, see figure 2(a)), the only visible regime is that induced by
thresholding (in our example, % = 3/2), while the second exponent (y, = 2), which, as will be demonstrated
below, governs the large scale asymptotics, remains hidden unless much larger sample sizes are used (figure 2(b)).

In the inset of figure 3 we plot the fitted values 7, as a function of the rescaled sample size N'/h. The data
collapse is remarkable: the sample size required to recover the exponent 7, grows linearly with the threshold h.
This is in agreement with the scaling of the crossover that separates the two scaling regimes, g, « h, see
section 3.2.1.

Although the algorithm is easy to implement, finding the two scaling regimes numerically can be
challenging. There are a number of caveats:

(1) The crossover point g, between the two scaling regimes scales linearly with the threshold, g, = 87h (see
section 3.2.1), effectively shifting the whole gs_2 asymptotic regime to larger and thus less likely values of g,.

To maintain the same number of events above g, o h, one needs N / ® dg, gs_2 = const,i.e. N o h.
8x

(2) Because the expected running time of the algorithm diverges, one has to set an upper cutoff on the maximum
generational timescale, say g, < G.If the computational complexity for each update is constant, an
individual realization, starting from # (0) = h + land runningupto n(g,) = hwith g < G, has

complexity O (g; ?)in large g, where g is the scaling of the expected survival time of the mapped random
walker introduced below. The expected complexity of realizations that terminate before G (with rate ~1 / g)
is therefore linear in G, /1 dg.g.~ g = G — 1. With the random walker mapping it is easy to see that the
expected population size n(g) of realizations that terminate after G (and therefore have to be discarded as g;
exceeds G) is of the order n(g,) ~ G for g, = G. These realizations, which appear with frequency «1/G,
have complexity @ (G?), i.e. the complexity of realizations of the BDP is @ (G) both for those counted into
the final tally and those dismissed because they exceed G. There is no pomt probmg beyond Gif N is too
small to produce a reasonable large sample on a logarithmic scale, N / 2 dg,g.~ = const, so that N~G

4
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Figure 4. Magnification of the right interval in figure 1. The clock starts when n(g) exceeds the threshold and stops when n(g) returns
to the threshold.
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Figure 5. The same data as in figure 4 but on the mapped time scale of the random walker, which evolves in equally spaced, discrete
steps. The survival time is necessarily odd, t; = 2T — 1, T € N (t,=29 in this example).

and thus the overall complexity of a sample of size N is © (N'?) and thus O (h?) for G ~ g, ~ hand N « h
from above.

That s, larger h necessitates larger ', leading to quadratically longer CPU time. In addition, parallelization
of the algorithm helps only up to a point, as the (few) biggest events require as much CPU time as all the smaller
events taken together. The combination of all these factors has the unfortunate consequence that, for large
enough values of h, observing the P% (g,) o gs_2 regime is simply out of reach (even for moderate values of i,

such as i = 100, to show the crossover as clearly as in figure 2, a sample size as large as N' = 9 x 10° was
necessary, which required about 1810 h of CPU time).

3. Results

While it is straightforward to set up a recurrence relation for the generating function if the threshold is h = 0, the
same is not true for & > 0. This is because the former setup (h = 0) does not require an explicit implementation
of the absorbing wall since the process terminates naturally when 7 (g) = 0 (there is no individual left that can
reproduce or die). If, however, h > 0, the absorbing wall has to be treated explicitly and that is difficult when the
evolution of the process (the effective diffusion constant) is a function of its state, i.e. the noise is multiplicative.
In particular, a mirror charge trick cannot be applied.

However, the process can be mapped to a simple random walk by ‘a change of clocks’, a method detailed in
[16]. For the present model, we observe that (g) performs a fair random walk r, by a suitable mapping of the
generational timescale g to that of the random walker, 7, (g) = n(g) with ¢ (¢) € N.Infact, because of the
Poissonian nature of the BD process, birth and death almost surely never occur simultaneously and a suitable,
unique t(g) is found by ¢ (0) = 0 and

limt(g+e) —t(g—¢€) =lim |n(g+e) —n(g—e)l (1)
e—>0" e—>0%
i.e. t(g) increases whenever n(g) changes and is therefore an increasing function of g. With this map, r,is a simple
random walk along an absorbing wall at /i, see figure 5. The challenge is to derive the statistics of the survival
times g; on the time scale of the BD process from the survival times #, on the time scale of the random walk.
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In the following, we first approximate some important properties of the survival times in a handwaving
manner before presenting a mathematically sound derivation in section 3.2.

3.1. Approximation

The expected waiting time® between two events in the BDP is 1/, if n is the current population size, with

n = ny, + hsuch thatn, is the excess of n above h. As discussed in detail in section 3.2, 1, is a time-dependent
random variable, and so taking the ensemble average of the waiting time is a difficult task. But on the more
convenient time scale #, the excess 1, performs a random walk and it is in that ensemble, with that time scale,
where we attempt to find the expectation

- ts—1 1
sh)= —_— ,
gS(t ) g < flx(t) +h >R(t5) (2)

which is the expected survival time of a thresholded BD process given a certain return (or survival) time ¢, of the
random walker. In this expression r,(¢) is a time-dependent random variable and the ensemble average ( - )z ()
is taken over all random walker trajectories R (¢, ) with return time #,. To ease notation, we will include the
argument of R (¢,) only where necessary. Replacing the random variable g, by its mean g (,; h), the PDFs for ¢,
and g; are approximately related via,

pgs(gs) d gs(t” h) ~ P“(ts). (3)

This map will be made rigorous in section 3.2, avoiding the use of g (£;; h) inlieu of the random variable.
In a more brutal approach, one may approximate the time dependent excess #,(t) in equation (2) by its
expectation conditional to a certain survival time £,

1 1 1
<h+nx(t) >R_h+(nx(t))R .- ny(t) — (ne ()5
h+ (ne(t))n

1
S h+ (e (D)

so that the expected survival time g, (t;) given a certain return time ¢, is approximately t,/(h + (. (t) )r ).
The quantity (n, (t) ) is the expected excursion of a random walker, which is well-known to be

(ne (1)) ~ Jg 172 5)

in the continuum limit (with diffusion constant 1/2 ) (e.g. [17, 18]). Thus

- t,
to h) 8 ————.
gs( ’ ) h+ [xt/8
Atsmall times, h > ,/xt,/8, the relation between g;and t,is essentially linear, g, ~ t,/h, whereas for large times,
h <« nt/8, the asymptoteis g ~ /8t,/x. Writing the right-hand side of equation (6) in the form

V8 \/hz— allows us to extract the scaling of the crossover time. The argument of the square root is of
8

+ (higher order terms) (4)

(6)

order umtywhen tx = 8h*/x, for which & (tx, h) = 4h/x. Moreover, one can read off the scaling form
gt ) = 226 (i), 7)

with G (x) = +/8/x/(1 + /8/(nx) ) and asymptotes G (x) ~ /x forsmallxand lim,_, .G (x) = +/8/x.
The PDF of the survival time

1 2
PtS(tS) =2 exp| — 2 (8)
4xDts Dt 4Dt

of arandom walker along an absorbing wall is well-known to be a power law ot .~>'2 for times , large compared
to the time scale set by the initial condition, i.e. the distance a of the random walker from the absorbing wall at
time ¢t =0. The precise value of a is effectively determined by the details the continuum approximation, here
a=1,D = 1/2,and so werequire 1 < 2t;.

6 . . . . . .
In a numerical simulation this would be the time increment.
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gl 16h
16 T (T&))
where 7 (y) = 1 + y + /1 + 2y.Evaluating the crossover time by setting y = 1 yields g, = 16h/x. The PDF of
the survival time of the BD process finally reads

-1/2 T’
Pgs(gs; h) ~ (%T(y)) gjz(Z - yT(;y))), (9)

To derive the PDF of the BD process, note that equation (6) has the unique inverse ,(g,) =

where y = @ For small y, the last bracket converges to 2, so P3:(g; h) ~ 24/8/x gs_2 forlarge g.. For large y,
g,

the last bracket converges to 1, s0 P (g; h) ~ (1/ Jh) 35_3/ 2 for small [

This procedure recovers the results in section 3.2: for g, < 16h/x the PDF of the survival times in the BD
process goes like gs_3 /2, and for g, > 16h/x like gs_z, independent of h. Equation (9) also gives a prescription for
a collapse, since P% (g ; h) gs2 plotted versus g./h should, for sufficiently large g, reproduce the same curve, as
confirmed in figures 7 and 8.

Applying a threshold introduces a new scale, 16 h/z, below which the PDF displays a clearly discernible
power law, g;a /2, corresponding to the return time of a random walker. The ‘true’ gs_z power law behaviour (the
large g asymptote) is visible only well above the threshold-induced crossover.

3.2. Detailed analysis
In the previous section we made a number of assumptions, in particular the approximation of replacing the
random variable by its expectation, and the approximation in equation (4), which both require further

justification.
In the present section we proceed more systematically. In particular, we will be concerned with the statistics
of the BD survival time g (R) given a particular trajectory R = {y, 1, ..., 1.} of the random walk, where

t, = 2T — 1,necessarilyodd, T € N, see figures 5 and B1 . We will then relax the constraint of the trajectory and
study the whole ensemble £2 of random walks terminating at a particular time 2T — 1, denotingas g (2(T)) a
survival time drawn from the distribution of all survival times of a BD process with a mapping to arandom
walker that terminatesat 2T — 1 or, for simplicity, just g (£2). This will allow us to determine the existence of a
limiting distribution for g, (€2)/v/T and to make a quantitative statement about its mean and variance. We will
not make any assumptions about the details of that limiting distribution; in order to determine the asymptotes of
P4 (g; h) weneed only know that the limit exists.

For a given trajectory R of the random walk, the resulting generational survival time g (R ) may be written
as

2T-2

g(R) = X &(n+h), (10)
t=0

where & () is arandom variable drawn at time ¢ from an exponential distribution with rate @, i.e. drawn from
ae™®, and r,is the position of the random walk at time #, with initial condition r, = 1and terminatingat 27 — 1
with r,y_; = 0 (see figure B1).

The mean and standard deviation of &, are 1/(r, + h), necessarily finite, so that by the central limit theorem
the limiting distribution of g, (R)/+/T given a trajectory R is Gaussian (for T > 1). This ensures that
g.(2)/+/T has alimiting distribution (see appendix C).

Itis straightforward to calculate the mean and standard deviation of g (R) for a particular trajectory R that
terminates after 2T — 1 steps. Slightly more challenging is the mean y (€2) and variance 62 (£2) of g . (82) for the
entire ensemble 2 of such trajectories. The details of this calculation are relegated to appendix B. Here, we state
only the key results. For the mean of the survival time, we find

ﬂ(9)22ﬁ+2hw(%) (11)

(see equation (B.22)) with y (x) = e (Ei(x) — € (1x)/1) and asymptotes

2JaT  for T 2
4 (Q) ~ 7 orT>h (12)
2T/h for T < h?
see equation (B.24). The variance is
62(Q2) =T I(x) — pu(R2)? + K(x) (13)
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(see equation (B.27)) with integrals 7 (x) and K (x) defined in equation (B.284) and with asymptotes

477T”;3 for T > h?,
0% (Q) ~ 3 (14)

2T/h? for T < h?,

see equation (B.32). All these results are derived in the limit 7' > 1in which the mapped random walker takes
more than just a few steps, corresponding to a continuum approximation. However, as shown in the following,
the results remain valid even for T close to one.

To assess the quality of the continuum approximation and the validity of the asymptotes, we extracted the
mean y (2 (T)) and variance 62 (2 (T) ) of the survival time &, (2(T)) from simulated BDPs starting with a
population size n(0) = h 4+ 1andreturningto n(g,) = hafter 2T — 1updates (births or deaths), i.e. the
process was conditioned to a particular value of T In particular, we set the threshold at 4 = 100, and simulated a
sample of 10° constrained BDPs for values T = 2%, k = 0... 20. The results are shown in figure 6 and confirm the
validity of thelarge T' > 1approximation in equations (11) and (13), as well as the asymptotes (12) and (14).
Remarkably, as previously stated, equations (11) and (13) are seen to be valid even when the condition T' > 1
does not reasonably hold.

3.2.1. Distribution of g
For large T, the generational survival time g; given a survival time 2T — 1 of the mapped random walk has PDF

1 g — n(@(1))
P(gs b T) ()] , (15)
(637 7) Jo2(2(T)) [ Yol (2(T)) ]

where @ (x) denotes the limiting distribution of the rescaled survival time (g, — 4 (2(T))) / \Jo?(Q2(T)),and

the mean y (2 (T)) and variance ¢* (2 (T) ) are given by equations (11) and (13). We demonstrate that @ exists
and find its precise (non-Gaussian) form in appendix C for completeness, but we will not use this result in what

follows: to extract the asymptotic exponents and first order amplitudes, see below, knowledge of the mean p (£2)
and variance ¢ (£2) is sufficient.

As the ensembles 2 (T') are disjoint for different T, the overall distribution P3: (g; h) of survival
generational times is therefore given by the sum of the constrained distribution P%:(g; h; T) weighted by the
probability of the mapped random walk to terminate after 27" — 1 steps. In the limit of large T, as assumed
throughout, that weight is T=2/2/(27) [19]. Therefore

O - —u(Q(T
T (p[gs ICICN] ”

P (ssh) = 2 Fam)

=1 2T \Jo?(Q(T))
To extract asymptotic behaviour for T < h?and T > h? we make a crude saddle point, or ‘pinching’
approximation, by assuming that @ (x) essentially vanishes for |x| > 1/2 and is unity otherwise. This fixes the
random walker time T'via g, — u (£2(T)) = 0, while the number of terms in the summation is restricted to

satisfy |g. — p(2(T))] < o2 (2(T)). After some algebra we find

% forg, < 1/h,
oY -3/
pgs<gs, h) - iﬁ for 1/h < g, < 8xh, (17)
b2
2¢72 for g, > 8xh.

The qualitative scaling of these two asymptotes was anticipated after equation (9). The crossover time
8x = 8zh, shown in figures 7 and 8, can be determined by assuming continuity of 7% (g; k) and thus imposing

132
J2hn X
for varying h with the numerical evaluation of equation (16) for & = 100, thus confirming the validity of the data

collapse proposed in equation (9). In particular, the shape of the transition between the two asymptotic regimes,
predicted to take place near g,/h = 8x,is recovered from equation (16) with great accuracy. As an alternative to
the numerical evaluation of equation (16), we introduce in appendix D a complementary approach that
provides the Laplace transform of P% (g ; h), see equation (D.4). Unfortunately, inverting the Laplace transform
analytically does not seem feasible, but numerical inversion provides a perhaps simpler means of evaluating

P4 (g h)in practice.

=2g, 2, Figure 7 shows P (g5 h) gs2 versus g./h for varying h, comparing Monte Carlo simulations
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Figure 6. Numerical comparison of the approximations equations (11) and (13) (shown as full lines), their asymptotes equations (12)
and (14) (dashed) and the numerical estimates based on a sample of 10° realizations per datapoint in a Monte-Carlo simulation of a
birth—death process constrained to 2T — 1 updates, with i=100and T = 2%, k = 0... 20.

In addition to the two asymptotic regimes discussed so far, one notices that figure 8 displays yet another
‘regime’ (left-most, green shading), which corresponds to extremely short survival times. This regime is almost
exclusively due to the walker dying on the first move via the transition (0) = h 4+ 1ton(g,) = h.Inthis case,
the sum in equation (10) only has one term, and hence the PDF of g, can be approximated as
Ps(gs h) = %(h + 1)e+he ~ %, where the factor 1/2 corresponds to the probability of T=1, and the
limit of small g has been taken. Thus, for very short times g, < 1/h, the PDF of g, is essentially ‘flat’. In order to
estimate the transition point to this third regime, we impose again continuity of the solution, so that
(h+1)/2 = gx_)f 2/ J27h and hence (dropping the constants) g, = 1/h,as shown in equation (17) as well as
figures 7 and 8.

Given the threeregimes shown in figure 7, P%: (g ; h) can be collapsed either by ignoring the very short scale,
(see equation (9))

pgs(gs; h) = 2gs_2g><gs/h) for  g>1/h (18)

with G, (x) = 1forlargexand G.(x) = /x/(8x) in small x, or according to

-3/2

P&(gs; h) ~ —C|gh for g < 8nh (19)

\27h

with G(x) = 1forlarge xand G(x) = x3/2\/z/2 for small x. Power-law scaling (crossover) functions offer a
number of challenges, as they affect the ‘apparent’ scaling exponent [20]. Also, there is no hard cutoffin the
present case, i.e. moments (g") = / dg, P% (g h)g" donot exist for m > 2.

4. Summary and discussion

The main goal of the present paper has been to understand how thresholding influences data analysis. In
particular, how thresholding can change the scaling of observables and how one might detect this.

To this end, we worked through the consequences of thresholding in the BDP, which is known to have a
power-law PDF of survival times with exponent y = 2. We have shown, both analytically and via simulations,
that the survival times g, for the thresholded process include a new scaling regime with exponent y = 3/2 in the
range 1/h < g < 87h (see figure 8), where his the intensity level of the threshold.

We would like to emphasize how difficult it is to observe the asymptotic y = 2 exponent, even for such an
idealized toy model. For large values of the threshold, 1 = 5000, sample sizes as large as 10'° are needed in order
to populate the histogram for large survival times. Real-world measurements are unlikely to meet the demand
for such vast amounts of data. An illustration of what might then occur for realistic amounts of data that are
subject to threshold is given by figure 2, where only the threshold-induced scaling regime associated with
exponent —3/2 is visible.

Intriguingly, a qualitatively similar scaling phenomenology is observed in renormalized renewal processes
with diverging mean interval sizes [21]. The random deletion of points (that, together with a rescaling of time,
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Figure 7. Collapse of the PDFs for different thresholds / for large g, > 1/h, plotting P*: (g; h) gs2 against g /h,according to
equations (9) and (18), capturing equation (17). Symbols correspond to simulations at different threshold levels i = 20, 200, 500
and 2000. The black full lines indicate the asymptotes according to equation (17), the dashed lines show the crossovers at g /h = 8z
and g/h = 1/h?for h =100 Finally, the black thick dashed line corresponds to the analytical solution computed from equation (16)
for h =100, while coloured full lines were computed by numerically inverting the Laplace transform given in equation (D.4), see
appendix D. Another collapse is possible according to equation (19).
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Figure 8. The PDF of survival times P%: (g;; h) for h = 100. Three scaling regimes partitioned by g, (thin dashed line) and g, (thin
dotted line) exist: for very short times g << 1/h (green shading), the exponential waiting time to the first (death) event dominates, so
that P (g5 h) ~ (h + 1)/2. For ‘intermediate’ times (red shading) 1/h < g, < 87h, the effect of the threshold dominates, and
hence P% (g; h) ~ gs_3 12 [27h . For long times (blue shading) g, > 8xh, P& (g; h) ~ 2g5_2, independently of h. Monte-Carlo
simulation results are shown as symbols, asymptotes of P (g;; h), equation (17), as solid lines, and the analytical solution P3: (g ; h),
computed via equation (16) as a black thick dashed line, and via numerical inversion of the Laplace transform, equation (D.4), as a red
solid line.

constitutes the renormalization procedure) is analogous to the raising of a threshold. It can be shown that the
non-trivial fixed point distribution of intervals is bi-power law. The asymptotic scaling regime has the same
exponent as that of the original interval sizes. But, in addition, a prior scaling regime emerges with a different
exponent, and the crossover separating the two regimes moves out with increasing threshold.

A fundamental difference between theoretical models and the analysis of real-world processes is that in the
former, asymptotic exponents are defined in the limit of large events, with everything else dismissed as
irrelevant, whereas real world phenomena are usually concerned with finite event sizes. In our example, the
effect of the threshold dominates over the ‘true’ process dynamics in the range 1/h < g, < 8zh, and grows with
increasing h before eventually taking over the whole region of physical interest.

Of course, real data may not come from an underlying BDP. But we believe that the specific lessons of the
BDP apply more generally to processes with multiplicative noise, i.e. a noise whose amplitude changes with the
dynamical variable (the degree of freedom). Let us cite two specific examples from the literature to illustrate our
point: in [22], Laurson et al apply thresholds to Brownian excursion, but since noise is additive in Brownian
motion, the asymptotic exponent of —3/2 is recovered at any threshold level. On the other hand, Larremore et al
[23] apply thresholds to networks of excitable nodes and critical branching processes, i.e. to processes with
multiplicative noise, and report strong effects of the threshold on the asymptotic exponents.

10
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Indeed, in a process with multiplicative noise, at large thresholds small changes of the dynamical variable are
negligible and an effectively additive process is obtained (the plain random walker in our example). Only for
large values of the dynamical variable is the original process recovered. These large values are rare, in particular
when another cutoff (such as, effectively, the sample size) limits the effective observation time (2T — 1above).
In the worst case, thresholding may therefore bury the asymptotics which would only be recovered for much
longer observation times. However, if the threshold can easily be changed, its effect can be studied systematically
by attempting a data collapse onto the scaling ansatz P& (g ; h) = g7 G (g, /hP), equations (9) and (18), with
exponents y and D to be determined, as performed in figure 7 with y = 2 and D = 1. The threshold plays an
analogous role to the system size in finite-size scaling (albeit for intermediate scales). In the present case, the
exponents in the collapse, together with the asymptote of the scaling function, identify two processes at work,
namely the BDP as well as the random walk.
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Appendix A. Power law fitting procedure

We use a fitting procedure valid for both truncated and non-truncated power-law distributions [ 15, 24]. Itis
based on maximum likelihood estimation of the exponent, the KS goodness-of-fit test, and Monte Carlo
simulations.

A continuous random variable x is power-law distributed if its probability density is given by

P(x) = Y;l( l)y, (A.1)

a7 — /b \x

where a > 0 and b are the lower and upper ends of the range, respectively. If b is finite, the distribution is
truncated, whileif b — oo, the distribution is non-truncated. In the latter case, y > 1isrequired fora
normalizable distribution.

The key to fitting power-law distributions properly to real-world data is to have an objective criterion for
deciding when the power law starts (and, in the truncated case, when it ends); this is the fitting range. Given a
sample Xj, X5, ..., X,,, we would like to estimate the parameter y and determine the interval [a, b] where the
power-law holds. In order to obtain a reliable estimate of the exponent y, we use maximum likelihood
estimation, with a and b fixed. The log-likelihood reads

=Ly mE e, £, (A2)
1— 7! a
where r=a/band gis the geometric mean. The value y which maximizes £ (y) is the maximum likelihood
estimator of the exponent.

Having estimated y, we quantify the goodness-of-fit via a KS test [25]. The KS statistic is the absolute value
between the theoretical and empirical cumulative distributions, where the empirical cumulative distribution is
given by the fraction of X; smaller than x, within the interval [a, b].

Using the 7 obtained from the data, we generate surrogate power law samples via Monte Carlo in order to
assign a p-value to the KS statistic. Under the null hypothesis, the p-value is the probability that the KS statistic
takes a value larger than that obtained empirically. Next, we apply the same procedure for all possible ranges
[a, b]and retain those fits (i.e., the triplets {a, b, y}) with p-values greater than p,. In this analysis we have taken
p.=0.5, which is quite conservative. Under the null hypothesis, the p-value is uniformly distributed such that
half of the correct models would be rejected.

Finally, we select one fitting range among all the listed triplets. For non-truncated power laws (b = o0 ), we
select the largest interval, i.e., the smallest a. For truncated power laws, one can either select the interval that
maximizes the number of data points contained within, or the size of the log-range b/a, see [ 15] for a discussion.
In this analysis, we have maximized the log-range, which tends to select power laws nearer to the tail of the
distribution.

Appendix B. Mean and variance of the survival time

This appendix contains the details of the calculations leading to the approximation (in large T), equations (11)
and (13), as well as their asymptotes equations (12) and (14), for the mean y (£2) and the variance 7 ()
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Figure B1. Sample path of a random walk along an absorbing wall at 0. The walker starts at t = 0 from ry and terminates at 2T — 1 by
reaching the wall r,7_; = 0,1i.e. ,y_, = 1. By construction, it cannot escape from the region demarcated by the dashed line. When
counting distinct paths, the number of paths terminating at r,7_; = 0 equals the number of paths passing through r,r_, = 1.

respectively, averaged over the ensemble £2 (T'), or £2 for short, of the mapped random walks with the constraint
that they terminate at 2T — 1, see figure B1.

In the following, we will use the notation &, for & (1, + h), butitisimportant to note thatany two & (r; + h)
are independent, even though the consecutive r, are not. The random variable g, (R) in equation (10) is thus a
sum of independent random variables &, whose mean and variance at consecutive t, however, are correlated due
to r,being a trajectory of a random walk. Because h + 7, > 0 for t < 2T — 1, the limiting distribution of

gR)—uR) )/\/62 (R) as T — oo is a Gaussian with unit variance. Mean u (R) and variance 6 (R) are
defined as

2T-2
H(R) = (8(R)), = ¥ (&> (B.1a)
t=0
c?(R)= < (gS(R) )2 >R _ <gS(R) >;
2T-2
= X (&édr — (e (ér (B.1b)

t,t'=0

and are functions of the trajectory R with ( - )% taking the expectation across the ensemble of £ for given, fixed

Riie (&)r = 1/(r + hand (§*)r — (&)% = 1/(r + h)*. Because (&& )r = (& )r (& )r for t # t' the
mean and the variance are in fact just

a2
R) = , B.2a
p(R) Z " (B.2a)
t=0
2T-2 |
2 —
l(R)= ) —. (B.2b)
t=0 (rt + h)
If p, (R) counts the number of times r, attains a certain level
2T-2
fBR) = buy (B.3)
=0

then Y222 f (1) = X228 8, (n) = X220, (R)f (), 50

B T—14n /%(R)
HR) = 3 (B.4a)

n=n

T—14r
* p(R)
2(R) = —. B.4b
(2 ( ) & (I’l+h)2 ( )

where we used the fact that within time 2T — 2 our random walker cannot stray further away from r, than
T — 1 + 1, asillustrated in figure B1.

In the same vein, we can now proceed to find mean and variance of g, over the entire ensemble 2 = Q(T) of
trajectories R thatterminate at 2T — 1. In the following ( - ) denotes the ensemble average over all
trajectories R € €2, each appearing with the same probability

12
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(@), = g 20 (8)), ®5

where f (&) is an arbitrary function of the random variable ;. We therefore have

2T-2 2T-2
b =< 5 §t> 1y'y
t=0 Q |Q|

R =0 i+
T— 1+r0 T—1+n <pn(R)>Q
|.Q|ZHZ:: n+h ; n+h (B.6)

where (g, (R))g is in fact the expected number of times a random walker terminatingat 2T — 1 attains level .
The variance turns out to require a bit more work. The second moment

R t,t'=0

(R?), = [ Z @] = -y 2 (&&)n (B.7)

simplifies significantly when  # ¢’ in which case the lack of correlations means that the expectation factorizes
(€& Im = (& )r (& )r, so that we can write

2T-2 2T-2 27—=2
D (EEr = Y ErEr+ X (D — E)%)- (B.8)
t,t'=0 t,t'=0 =0

2
Obviously fo;(z) (EVr{EDIR = ( Zfio_ 2 (& ) , but that is not a useful simplification for the time being.
The square of the first moment, equation (B.6), is best written as

27-2
(a®). = Y Y G (B.9)
12 F 2% =0
so that
o’ (@)= (gs(RV) - (g ®)
272 272
= & & ft & :
a §Z< (e + 1o ; 2 (€~ (&)
2T-2
IR (B.10)
|9| RoR617=0
The first and the last pair of sums can be written as
272
|_Q |2 z Z <§t>R(<§t >R <5t>n) (B.11)
R,R't,t'=0
using Y (1/12]) = 1,s0 that
272
o (Q) o Z Z <§t>R(<5t >R <§t>R)
|Q| RoR47=0
272
LYY () - (@02). (B.12)
Yol & &

In the first sum, the two terms can be separated into those in #' and one in . Using the same notation as above,
equation (B.3) we have

2T-2 T—1+r n,(R) - Py R/
Z (<§t’>R - <§t’>7a') = Z ’ o +ph ( ) (B.13)
t'=0 n'=n

2T-2 T—14r AR)
and Y_ (& = X, T

n+h
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The second sum recovers the earlier result in equation (B.4b), as (§*)z =

2T-2 T-14n  , (R
Y (e -2)= 3 % (5.14)

t=0 n=ry

2 1
ey and (&) = S0 that

and therefore

L0 (R) py(R) = py(R)

Z Zn+h n' +h

R,R' n,n'=ny
T—-14n ‘[%(R)

IQI z 2 (n+hy

n=rp

I-Q P

T—1+n T—1+n 2
* aR)py(R) 1 ‘AR
|Q|§Mz_r (n+h)(n' + h) [HZ Z n+h]

T-14r

I-QI Z Z (n+h)2

T <pn<7e>pnf<R> by (T (a0R) ) T (a®),
S L il Tath | T &

nn'=r n=ry n=rp

(B.15)

We now have the mean 4 (£2), equation (B.6), and the variance 62 (£2), equation (B.15),in terms of (g, (R) )
and (p, (R)p,, (R))q. In the following, we will determine these two quantities and then return to the original
task of finding a closed-form expression for y (£2) and 6% (£2).

B.1. (g, (R))gand 5, (R)p,, (R))g
Of the two expectations, (p, (R) ) is obviously the easier one to determine. Infact, ), p,(R) = 2T — 1implies

Y. R)p,(R))y = (2T — 1){p,(R)),i.e. (n,(R))qisa ‘marginal’ of (g, (R)p,, (R))e.
To determine (p, (R) ), we use the method of images (or mirror charges). The number of positive paths

t t
(r; > 0)from (t = 0, ro)to(t,n)are[n — 1+ t] - [n + 1+ t]forn + 15 + tevenand n > 0.By
2 2
construction, the number of paths passing through n = 0 is exactly 0, thereby implementing the boundary

condition. The set of paths (to be considered in the following) which terminate at time 2T — 1byreaching

ryr—_1 = 0is, up to the final step, identical to the set of paths passing through (2T — 2, 1),i.e. ,7_; = 0. The
number of positive paths (see figure B1) originating from (0, ry = 1) and terminating at

(t =2T — 1, r,y_; = 0) therefore equals the number of positive paths from (0, ry = 1) to (¢t = 2T — 2, n = 1),

sothat|Q| = (2T - 2) - <2T - 2) = %<2T - 2),which are the Catalan numbers [26, 27]. For r, = 1 we

T-1 T T-1
also have
t t " r+1
n—1+t|-|n+l+1t]|= n+ 1+t (B.16)
B ) t+1 5

again for n + 1y + t even. This is the number of positive paths from (0, 1) to (¢, n) and by symmetry also the
number of paths from (2T — 2 — ¢, n)to (2T — 2, 1), given that the walk is unbiased (see figure B1). If
(p,(t; R))qisthe expected fraction of paths passing through (¢, n) (illustrated in figure B1), we therefore

have
T r+1 2T —-1-—¢
. — n n — —
<pn(t, R)>Q = 7(”_ 2) e D bt LR el (B.17)
T-1 AN 2
e from(0,1) to (t, n) from (t, n) to (2T-2, 1)

which is normalized by construction, i.e. Y, (g, (t; R))qo = 1. The first binomial factor in the denominator is
due to the normalization, whereas of the last two, the first is due to paths from (0, 1) to (¢, n) and the second due
to paths from (t,n) to (2T — 2 — t, 1).Inthe following we are interested in the fraction of times a random
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walker reaches a certain level during its lifetime, (g, (R))o = Y., {g,(t; R))q. Using
( Z) ~ 2%(am/2)11? exp( —% (b - %)2) we find

2 2 2

8 T2 n n n
<pn(t; R) >Q ~ = 23/2(2T_ f)m exp —; - m R (B.18)

where wehaveused T > land f = ¢ + 1. Simplifying further gives

2T—n

(a®), = X (a(sR)) = 8”2\/225@

P 2 T<T(2 - 7)3/2) (B.19)

with the sum running over the  with the correct parityand 7 = #/T and v = n/~/T.In the limit of large T > 1
we find [28]

AR, 4 e EXP(_T(;—r))
lim —— = — _

= = 4peV’, B.20
e T vzdo Caa—opr (5:20)

where the parity has been accounted for by dividing by 2. In the last step, the integral was performed by some
substitutions, as 7 (2 — ) is symmetric about 1. It follows that in the limit of large T >> 1

<pn(7a) )Q ~ 4n exp[—n?z]. (B.21)

Using that expression in equation (B.6) gives equation (11), namely

T—-14n
—#(Q) ~ 4 2 1 v eV’
JT

JT
JT 0
~ / dl/zliyhe_”2 ~ d1/47yhe_”2 =2J7 + ZLV/(L) (B.22)
0 vVt — 0 vVt — JT T
T T
with [29, equation 27.6.3]
x 0 -
v (x) = —e_"z[Zﬁ / dse”’ + ][ dye—), (B.23)
0 —x? y

where we have used 1y = 1. The second integral is known as the exponential integral function
£ dy% = —Ei(x) and the first as (a multiple of) the imaginary error function 2 /& /0 * dse” = 7€ (1x)/1.1In

the limit of large arguments x, the function y (x) is — vz /x + 1/x* — & /(2x%) + 1/x* + O (x7>), in the limit
of small arguments by y + 2 In(x), where y is the Euler-Mascheroni constant. We conclude that

(B.24)

4(Q) ~ 24xT + 2h(y + 21n(h/ﬁ)) for T > h?
2T/h — JET3?/W? + 2T/ W for T < h?

(see equation (12)) provided T'is large compared to 1, which is the key assumption of the approximations used
above. It is worth stressing this distinction: T has to be large compared to 1 in order to make the various
continuum approximations (effectively continuous in time, so sums turn into integrals and continuous in state,
so binomials can be approximated by Gaussians), but no restrictions were made regarding the ratio T/h>.

The correlation function (g, (R)p,, (R) ) can be determined using the same methods, starting with
equation (B.17):
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(s 7)o (e5 %)),

—ZZ<2T 2>t’11 L“

tot<t T 2

~
from (0,1)to(t',n)

/]2
t—t r—t
x|{|t—-t+n-n|-|t-t+n+n
2 2
~ v
| from (t',n)to(t,n’) _
, 2T —1 -1t
n
X — | n+2T—-1-1t¢
2T — 1 —t| — >

.

\

from(t,n’;t:)(ZT—Z,l)
T n t+1
+ — | n+t+1
ZZ (ZT—Z) t+1|——
“ 2

T-1 2

'g

el from (0,1)to(t,n)

t —t v —t
X ' —t+n—-n|-|t'—t+n+n

v
from (¢,n)to(t',n’)

" 2T -1 -t
n+2T-1-1t"]. (B.25)

XZT 1

.

\

v
from(t',n")to(2T—2,1)

Because both tand ' are dummy variables, one might be tempted to write the entire expression as twice the first
double sum, which is indeed correct aslong as n # n'. In that case, the case t' = t does not contribute because
the ‘middle chunk’ (from (¢, 1) to (¢, n’) ) vanishes. However, if n = »’ that middle chunk is unity and therefore
needs to be included separately. This precaution turns out to be unnecessary once the binomials are
approximated by Gaussians and the sums by integrals.

The resulting convolutions are technically tedious, but can be determined in closed form on the basis of
Laplace transforms and tables [29, equations 29.3.82 and 29.3.84], resulting finally in

(0 (RIp,(R)) =8 T(e‘"Z/T - e—<"+"’>2/T) (B.26)

toleadingorderin T.
We proceed to determine equation (B.15) using equations (B.21) and (B.26) in the limit of large T. Again, we
interpret the sums as Riemann sums, to be approximated by integrals, resulting in equation (13),

62(2) =T I(x) — u(R)? + K(x) (B.27)
with x = h/J/T and
K(x) = f°° dn21 a4 aeym 42020 - Dy (), (B.284)
0 (n + x)*
—(n+n)
I(x) =16 / dn fo (n T (B.28b)

(for the definition of y (x) see equation (B.23)). Unfortunately, we were not able to reduce T (x) further.
Because of the structure of equation (B.27), where T T (x)r — p (£2)? scale linearly in Tat fixed x = h/ JT,
whereas K (x) remains constant, a statement about the leading order behaviour in T'is no longer equivalent to a
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statement about the leading order behaviour in 1/x2. This is complicated further by the assumption made
throughout that Tis large. The limits we are interested in, are in fact T > h?with T > land1 < T <« k% In
the following, we need to distinguish not only large x from small x, but also different orders of T.

Itis straightforward to determine the asymptote of 7 (x) in large x, where the denominator of the integrand

is dominated by x> while the numerator vanishes at least as fast as e™"*, because
, , /2 , /2
— e~(n+n? — e—nz(l — 2= Yand 0 < (1 — 2™ =" ) < 1,50 [28]

I(x)= l_ifo‘” dn [ dn’[e‘“z(l — e

_2
e "

(B.29)

Similarly, or using the expansion of  (x) introduced above, we find K (x) = 2/x? + O (x~2). Since
u(Q) = T (2/x — V&/x* + 2/x> + --+), the first two terms in the expansion of T (x) for large x cancel, and we
arrive at

2 34 8+
6’ Q)==+0(x* +T(—— +0 xs)
X2 ( ) 3X4 X4 < )
2T 10 -3z
R

T3+ .. (B.30)

for T < h?, containing the rather unusual looking (‘barely positive’, one might say) difference 10 — 37z. The
second term in equation (B.30) is clearly subleading in large x and no ambiguity arises in that limit, not even if
T> 1.

Thelimit h/~/T = x — 0, on the other hand, 7 (x) is

I(x) = %71’2 + O (x) (B.31)

using [29, equation 27.7.6] so that TT (x) — u (2)* = T (47%/3 — 4w + O(x)), whereas
K (x) = —4In(x) — 4 — 2y divergesin small x. Although this latter term therefore dominates in small x, the
former, TT (x) — u(£2)% does for large T > h? at finite, fixed h.

We are now in the position to determine the relevant asymptotes of 62 (£2), as stated in (14),

47T 3 for T > h?,

o2 () ~ (B.32)
E for T < h2.
hz

Appendix C. Limiting distribution of g_(£2)/ JT

In this second appendix, we explicitly find the limiting distribution of g (£2)/ JT. Webegin by noting that, for

T > 1, g (£2) can be approximated as g, (£2) ~ OZT dtm, where x(f) performs a Brownian excursion of
length 2T. While for large but finite T'this is clearly an approximation (e.g. the exponential random variables
have been replaced by their mean), in the limit of ' — oo the approximation becomes exact. In particular,
the ‘noise’ due to the variance of the exponential random variables scales like log T, see equation (B.28a),
and thus vanishes after rescaling with respect to /T In addition, owing to the scaling properties of Brownian
motion,

limg, (2)/VT = lim (C.1)
T—oo

2 1 2 1
dt——— = [ dt—
T-wJdo  x(t) + WNT fo x (1)

where x(t) is a Brownian excursion of length 2. Functionals of this kind have recently been discussed in detail in
[30]. To find the distribution of this quantity, we first define y (¢) = /o "de'/x (t'), and the propagator
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Z (%, y> X0, ¥,» t),1.e. the probability for a Brownian particle to go from (xo, y;) to (x, y) in time ¢, without
touching the line x = 0. Using standard techniques [31], the associated Fokker—Plank equation for the
propagator takes the form

1 1
[dt + —0d, — Eaxx]Z(x, Vs X0 Yoo 1) = 0, (C.2)
x
with initial condition
Z(x, Vs X0s Yy 0) =5(x—x0)5(y—y0), (C.3)
and boundary condition
Z(O, Vs X0s Vs t) =0. (C.4)
Taking the Laplace transform with respect to t yields
1 1 5
[s + —0, — dex] Z (%, 9, %0, 8) = 0(x — x0)0(y), (C.5)
X
Z(O, Vs X0 s) =0. (C.6)

We first solve the associated homogeneous equation, from which we will be able to construct the solution to the
inhomogeneous problem. After substituting the ansatz Zy,, (x, ¥, s) = ¥ (x, s)p (y, s), the equation separates
into

—1/20¥ (x, 5) + (s — A/x)¥ (x,5) =0, (C.7)
—0,p (y, s) + Ap (y, 5) =0, (C.8)

where Ais an arbitrary real constant. Equation (C.7) is an eigenvalue problem for ¥ (x, s) with respect to the
weight 1/x. The solutions that vanish at infinity take the form ¥ (x, s) e~V2sxy ( —A/\2s, 0, 24/2s x), but

only for Ay = </2sk, k = {1, 2,...} do they vanish at x= 0. The correctly normalized eigenfunctions that satisfy
boundary conditions are therefore

e—@xU(—k, 0, ZJZx)

JE(k = D!

These functions are an orthonormal set with respect to the weight 1/x, /0 ® dx¥; (x, 5) ¥ (x, s) i = d; andthe

%((x’ 5) = (C9)

corresponding closure relation reads Z;":l ¥ (x, s) ¥ (x, s)i = 6 (x — x’). One can use this to construct the
solution of the original equation. In particular

Z(x, 3, %0 5) = O(y) YW (x, ) ¥exo, 5)e™ V20 (C.10)
k=1
We now return to the original problem of finding the probability of a Brownian excursion with functional
fot 1/x(¢')dt’ = y (¢). We make use of the device xy = x = ¢,andlet ¢ — 0 only after normalization. In short

Z b > > t
}mmw@mmﬁzﬂzmTﬁill , (C.11)
— 00 €— € =2
where Z, = le_m (1 — e72¢"/!) is the well-known normalizing constant (see e.g. [18]). From (C.10) and
expanding for small x = x; = € term by term, we find
Z €,€, ), S e V74 2 —
Ze =1 (1 _ e—2€ /t>
Using the fact that ¥, (e, s)? =~ 8ske? for small €, we finally arrive at
Z €, €6 ), S i 2 _
lim7< ) ~ lim+2xt 2_851(6 e 2ky
e—0 ¢ e=0 k=1 26/t
/2y s
SIS Y 7 31 M B (C.13)

(e@y_ 1) sinhz(\/s/_Zy).
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Figure C1. The distribution of y = /0 ? dt 1/x (t), where x(t) is a Brownian excursion of length 2. The red full line is the analytical
result and black symbols correspond to simulations.

Inverting terms involving s yields

lim Prob(gS Q)T = }’)
T—-o

3/2 -2 X
_ [W# 3 (2kentre/(57)( (2akt 3y2)] (C.14)
y k=1 =2
Y N -0 g2 12,2
23 (k2 -3 | (C.15)
k=1 t=2

The first equation is obtained by collecting residues from double poles, and is useful for a small y expansion. The
second equation is obtained by expanding (C.13) and inverting term by term, and is useful for a large y
expansion. Both expressions converge rapidly and, evaluating at t = 2, are in excellent agreement with
simulations, see figure C1.

Appendix D. Laplace transform of P*: (g h)

In this final appendix, we take yet another route in the calculation of P$: (g, h) by finding its Laplace transform.
The key point in this approach is to approximate the embedded random walk of the process by standard
Brownian motion. Therefore, we expect our approximation to hold aslongas T > 1. The approach is very
similar in spirit to that of appendix C, but both Appendices are self-contained and can be read independently.

Let x(t) denote the trajectory of a Brownian particle starting at x (0) = x, and tits first passage time to 0.
Then we argue that, in the Brownian motion picture, the original observable of interest of the process g,
corresponds to the quantity G,

o= 7 AU, (x (1)), D.1)

with U, (x) = 1/(x + h). Effectively, the underlying exponential random variables & (x (¢) ) are replaced by their
average. Such an approximation, which can be seen as a self-averaging property of the process, is well-justified
because (i) the Brownian particle visits any state infinitely many times, and (ii) the exponential distribution has
finite moments of any order. We are hence left with computing the distribution of the integral of a function

Uy (x) along a Brownian trajectory starting at x (0) = x and endingat x (t;) = 0. As usual, the problem is most
conveniently solved by taking the Laplace transform of Gy, (see the excellent review by Majumdar, [18]). In
particular, the Laplace transform of P (Gy, ), which we denote by P (u; h, xo), fulfills the following differential
equation:

——P(u; h, xo) —u U,(xg) f’(u; h, xo) =0 (D.2)

with boundary conditions limxo_mf) (u; hy, x9) = 0and limxn_)()f) (u; h, x¢) = 1. Note that this is a differential
equation with respect to the initial position x,. The general solution to this differential equation is given by
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ﬁCl\/mh(Zﬁ u(h +x0)>
—\/ECquu(h+x0)K1(2x/§ u(h+x0)), (D.3)

where [ (x) and K| (x) are modified Bessel functions of the first and second kind respectively, and C; and C, are
constants to be determined via the boundary conditions. Because I (x, ) diverges for xo — oo, C; must be zero,
and G, is then fixed via the other boundary condition. Finally, by setting x(, = 1 we reach a remarkably simple
expression for the Laplace transform of P% (g, h),

Juth+ 1) Kl(zx/f‘/u(h + 1))
\/EKl(Z\/EM) '

This result is not only of interest in itself, but also provides a convenient way of evaluating P% (g, h) by
numerically inverting equation (D.4) (see figure 7 in the main text). We can also recover the asymptotic
exponents ¥, 3, of P$ (g, h) directly from its Laplace transform, equation (D.4). To see this, we consider the

P(u; h) = (D.4)

first and second derivatives of P (u; h),

—0,P (u; h) ~ J2/(hu) for 1 < h, (D.5)
0P (s 1) ~ 2 foru < 1. (D.6)
u

The first equation assumes large &, while the second does not; this allows us to recover the two scaling regions
mentioned in the main text. Then it is easy to check that an application of a Tauberian theorem [32, p 192] leads
to equation (17) in the main text, recovering not only the asymptotic exponents ¥, y,, butalso their associated
first order amplitudes.
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