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Abstract
The thresholding of time series of activity or intensity is frequently used to define and differentiate
events. This is either implicit, for example due to resolution limits, or explicit, in order tofilter certain
small scale physics from the supposed true asymptotic events. Thresholding the birth–death process,
however, introduces a scaling region into the event size distribution, which is characterized by an
exponent that is unrelated to the actual asymptote and is rather an artefact of thresholding. As a result,
numerical fits of simulation data produce a range of exponents, with the true asymptote visible only in
the tail of the distribution. This tail is increasingly difficult to sample as the threshold is increased. In
the present case, the exponents and the spurious nature of the scaling region can be determined
analytically, thus demonstrating theway inwhich thresholding conceals the true asymptote. The
analysis also suggests a procedure for detecting the influence of the threshold bymeans of a data
collapse involving the threshold-imposed scale.

1. Introduction

Thresholding is a procedure applied to (experimental) data either deliberately, or effectively because of device
limitations. The thresholdmay define the onset of an event and/or an effective zero, such that below the
threshold the signal is regarded as 0. An example of thresholding is shown infigure 1. Experimental data often
comeswith a detection threshold that cannot be avoided, either because the device is insensitive below a certain
signal level, or because the signal cannot be distinguished fromnoise. The quality of ameasurement process is
often quantified by the noise to signal ratio, with the implication that high levels of noise lead to poor (resolution
of the) data. Often, the rationale behind thresholding is toweed out small events which are assumed irrelevant
on large scales, thereby retaining only the asymptotically big events which are expected to reveal (possibly
universal) large-scale physics.

Most, if not all, of physics is due to some basic interactions that occur on a ‘microscopic length scale’, say the
interaction betweenwater droplets or the van derWaals forces between individual watermolecules. These
length scales separate different realms of physics, such as betweenmicro-fluidics andmolecular physics or
betweenmolecular physics and atomic physics. However, these are not examples of the thresholds we are
concernedwith in the following. Rather, we are interested in an often arbitrarymicroscopic length scale well
above the scale of themicroscopic physics that governs the phenomenonwe are studying, such as the
spatiotemporal resolution of a radar observing precipitation (which ismuch coarser than the scale set by
microfluidics), or the resolution of themagnetometer observing solarflares (which ismuch coarser than the
scale set by atomic physics and plasmamagnetohydrodynamics).

Such thresholds often come down to the device limitations of themeasuring apparatus, the storage facilities
connected to it, or the bandwidth available to transmit the data. For example, the earthquake catalogue of
SouthernCalifornia is only complete abovemagnitude 3, even though the detection-threshold is around
magnitude 2 [1]. One fundamental problem is the noise-to-signal ratiomentioned above. Even if devices were to
improve to the level where the effect of noise can be disregarded, thresholdingmay still be an integral part of the

OPEN ACCESS

RECEIVED

30November 2014

REVISED

18March 2015

ACCEPTED FOR PUBLICATION

23March 2015

PUBLISHED

30April 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/17/4/043066
mailto:fontclos@crm.cat
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/4/043066&domain=pdf&date_stamp=2015-04-30
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/4/043066&domain=pdf&date_stamp=2015-04-30
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


measurement. For example, the distinction between rainfall and individual drops requires a separation of
microscale andmacroscale which can be highly inhomogeneous [2]. Solar flares,meanwhile, are defined to start
when the solar activity exceeds the threshold and endwhen it drops below, but the underlying solar activity never
actually ceases [3].

Thresholding has also played an important rôle in theoreticalmodels, such as the Bak–Sneppenmodel [4] of
self-organized criticality [5], where the scaling of the event-size distribution is a function of the threshold [6]
whose precise valuewas the subject ofmuch debate [7, 8]. Finite size effects compete with the threshold-
imposed scale, which has been used in somemodels to exploit correlations and predict extreme events [9].

Often, thresholding is tacitly assumed to be ‘harmless’ for the (asymptotic) observables of interest and
beneficial for the numerical analysis.Wewill argue in the following that this assumptionmay be unfounded: the
very act of thresholding can distort the data and the observables derived from it. To demonstrate this, wewill
present an example of the effect of thresholding by determining the apparent scaling exponents of a simple
stochastic process, the birth–death process (BDP).Wewill show that thresholding obscures the asymptotic
scaling region by introducing an additional prior scaling region, solely as an artefact. Owing to the simplicity of
the process, we can calculate the exponents, leading order amplitudes and the crossover behaviour analytically,
in excellent agreement with simulations. In doing so, we highlight the importance of sample size since, for small
samples (such asmight be accessible experimentally), only the ‘spurious’ threshold-induced scaling region that
governs the process at small scalesmay be accessible. Finally, we discuss the consequences of ourfindings for
experimental data analysis, where detailed knowledge of the underlying processmay not be available, usually the
mechanismbehind the process of interest is unclear, and hence such a detailed analysis is not feasible. But by
attempting a data collapse onto a scaling ansatz that includes the threshold-induced scale, we indicate how the
effects of thresholding can be revealed.

The outline of the paper is as follows: in section 2we introduce themodel and the thresholding applied to it.
To illustrate the problems that occurwhen thresholding real data, we analyse in detail some numerical data. The
artefact discovered in this analysisfinds explanation in the theory present in section 3.We discuss these findings
and suggest ways to detect the problem in thefinal section.

2.Model

In order to quantify numerically and analytically the effect of thresholding, we study the BDP [10]with
Poissonian reproduction and extinction rates that are proportional to the population size.More concretely, we
consider the population size n(g) at (generational) time ⩾g 0. Each individual in the population reproduces
and dieswith the same rate of 1 2 (in total unity, so that there are n(g) birth or death events or ‘updates’ per time
unit on average); in the former case (birth) the population size increases by 1, in the latter (death) it decreases by
1. The state =n g( ) 0 is absorbing [11]. Because the instantaneous rate withwhich the population n(g) evolves is
n(g) itself, the exponential distributions fromwhich the randomwaiting times between events are drawn are
themselves parameterized by a random variable, n(g).

Because birth and death rates balance each other, the process is said to be at its critical point [12], which has
the peculiar feature that the expectation of the population is constant in time, 〈 〉 =n g n g( ) ( )0 , where 〈 〉·

Figure 1.Example of thresholding of a time series. An event beginswhen the signal exceeds the threshold (dotted lines,
=h 10, 20, 30) and ends as soon as the signal falls below the threshold. Increasing levels of the threshold lead (non-monotonically) to

different numbers of events and, provided the signal eventually ends,monotonically smaller total event durations. Themain focus of
this paper is on the statistics of the individual event durations, as exemplified by the two intervals for the intermediate threshold.

2
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denotes the expectation and n g( )0 is the initial condition, set to unity in the following. This constant expectation
ismaintained by increasingly fewer surviving realizations, as each realization of the process terminates almost
surely.We therefore define the survival time as the time −g gs 0 such that >n g( ) 0 for all ⩽ <g g gs0 and

=n g( ) 0 for all ⩾g gs. For simplicity, wemay shift times to =g 00 , so that gs itself is the survival time. It is a
continuous randomvariable, whose probability density function (PDF) is well known to have a power law tail in
large times,  ∝ −g g( )g

s s
2

s [12, as in the branching process].
In the following, wewill introduce a threshold, whichmimics the suppression of somemeasurements either

intentionally or because of device limitations. For the BDP thismeans that the population size (or, say, ‘activity’)
below a certain, prescribed level, h, is treated as 0when determining survival times. In the spirit of [3, also solar
flares, 13], the threshold allows us to distinguish events, which, loosely speaking, start and endwhenever n(g)
passes through h.

Explicitly, events start at g0 when ϵ− =ϵ→ +n g hlim ( )0 0 and = +n g h( ) 10 . They end at gswhen
=n g h( )s , with the condition >n g h( ) for all ⩽ <g g gs0 . This is illustrated infigures 1 and 4.No thresholding

takes place (i.e. the usual BDprocess is recovered) for h= 0, inwhich case the initial condition is =n g( ) 10 and
termination takes place at gswhen =n g( ) 0s . For >h 0 onemay think of n(g) as an ‘ongoing’ time series which
never ceases andwhichmay occasionally ‘cross’ h frombelow (starting the clock), returning to h some time later
(stopping the clock). In a numerical simulation onewould start n(g) from = +n g h( ) 10 at =g 00 andwait for
n(g) to arrive at =n g h( ) from above. The algorithmmay be summarized as

for i=1... do

n ← h+1

←gi 0

while n > hdo

←g gi i +ξ(n)

n ← n+b

endwhile

end for

where ξ n( ) is an exponential randomvariable with rate n, and b stands for a randomvariable that takes the
values −{ 1, 1}with probability 1/2. In our implementation of the algorithm, all randomvariables are handled
with theGNUScientific Library [14].

2.1. Numerics and data analysis
Monte-Carlo runs of themodel reveal something unexpected: The exponent of the PDF of the thresholded BDP
appears to change from  ∝ −g g( )g

s s
2

s at h=0 to  ∝ −g g( )g
s s

3 2
s at h=100 or, in fact, any reasonably large

≳h 10. Figure 2 shows  g( )g
s

s for the case of h=100 and two different sample sizes,  = 101
3 and  = 102

10,
corresponding to ‘scarce data’ and ‘abundant data’, respectively. In the former case, the exponent of the PDF is
estimated to be γ = ≈ˆ 1.52(3) 3 21 ; in the latter, the PDF splits into two scaling regimes, with exponents
γ = ≈ˆ 1.50070(2) 3 21 and γ = ≈ˆ 1.998(4) 22 . This phenomenon can be investigated systematically for

different sample sizes  and thresholds h.
We use thefitting procedure introduced in [15], which is designed not only to estimate the exponent, but to

determine the range inwhich a power law holds in an objective way. It is based onmaximum likelihood

Figure 2. (a): the PDF  g h( ; )g
s

s of the survival time gs of a thresholded BDP,with a threshold of h=100, estimated fromMonteCarlo

simulations using a limited sample size of  = 103. Fitting a power law yields an exponent of γ =ˆ 1.52(3)1 over the range
×[0.031, 1.259 10 ]5 , with a p-value of 0.71. (b): same as above, but using a sample size of  = 1010. In this case, two power laws can

befitted in two different regimes: below X π=g h8 , wefind γ =ˆ 1.50070(2)1 in the (fixed) range −[10 , 10 ]2 3 , while above Xg , thefit

leads to γ =ˆ 1.998(4)2 over the range × ×[1.99 10 , 3.16 10 ]5 8 , with a p-value of 0.55.Monte Carlo simulations are shown as symbols,
while the small (large) regime power-law fit is plottedwith full black lines, and the fitted rangemarkedwith red (blue) shading.

3
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methods, theKolmogorov–Smirnov (KS) test andMonteCarlo simulations of the distributions, see appendix A
for details. Infigure 3we show the evolution of the estimated large scale exponent, γ̂2, for different  and for
different h. Thefits aremade by assuming that there is a true power law in afinite range [a, b]. For values of the
exponent between 1.5 and 2 larger error bars are observed. For these cases, less data isfitted but thefitting range
is always at least two orders ofmagnitudewide.

It is clear from figure 3 that  has to be very large in order to see the true limiting exponent. Even the
smallest h investigated, h= 20, needs a sample size of at least  = 107, while for =h 5000 the correct
exponent is not foundwith less than about  = 1010. It is natural to ask how large the applied thresholds are
compared to the average signal amplitudeA ormaximumM. Focusing on the case shown in figure 2(a), where
h= 100 and  = 103, we find that ≃ 〈 〉 ≃ 〈 〉h A M0.07 0.02 , so that in this sense, the thresholds can be
regarded as ‘small’.

Themere introduction of a threshold therefore changes thePDFof events sizes significantly. It introduces a
new, large scaling regime,with an exponent that ismisleadingly different from that characterizing large scale
asymptotics. In fact, for small sample sizes ( = 101

3, seefigure 2(a)), the only visible regime is that inducedby
thresholding (in our example, γ = 3 21 ),while the second exponent (γ = 22 ),which, aswill be demonstrated
below, governs the large scale asymptotics, remainshiddenunlessmuch larger sample sizes are used (figure 2(b)).

In the inset offigure 3we plot the fitted values γ̂2 as a function of the rescaled sample size  h. The data
collapse is remarkable: the sample size required to recover the exponent γ̂2 grows linearly with the threshold h.
This is in agreementwith the scaling of the crossover that separates the two scaling regimes, X ∝g h, see
section 3.2.1.

Although the algorithm is easy to implement, finding the two scaling regimes numerically can be
challenging. There are a number of caveats:

(1)The crossover point Xg between the two scaling regimes scales linearly with the threshold, X π=g h8 (see

section 3.2.1), effectively shifting thewhole −gs
2 asymptotic regime to larger and thus less likely values of gs.

Tomaintain the same number of events above X ∝g h, one needs
X

 ∫ =∞ −g gd const
g s s

2 , i.e.  ∝ h.

(2)Because the expected running time of the algorithm diverges, one has to set an upper cutoff on themaximum
generational timescale, say <g Gs . If the computational complexity for each update is constant, an

individual realization, starting from = +n h(0) 1and running up to =n g h( )s with <g Gs , has

complexity  g( )s
2 in large gswhere gs

2 is the scaling of the expected survival time of themapped random
walker introduced below. The expected complexity of realizations that terminate beforeG (with rate ∼ g1 s

2 )
is therefore linear inG, ∫ = −−g g g Gd 1

G

s s s1
2 2 .With the randomwalkermapping it is easy to see that the

expected population size n(g) of realizations that terminate afterG (and therefore have to be discarded as gs
exceedsG) is of the order ∼n g G( )s for =g Gs . These realizations, which appear with frequency ∝ G1 ,
have complexity  G( )2 , i.e. the complexity of realizations of the BDP is  G( )both for those counted into
thefinal tally and those dismissed because they exceedG. There is no point probing beyondG if  is too
small to produce a reasonable large sample on a logarithmic scale,  ∫ =−g gd const

G

G

s s

2 2 , so that  ∼ G

Figure 3.Estimated large scale exponent γ̂2 for different thresholds h and sample size  . The error bars correspond to one standard
deviation and are inversely proportional to the number of datawithin thefitted range. Inset: estimated large scale exponent γ̂2 as a
function of a ‘rescaled sample size’  h.
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and thus the overall complexity of a sample of size  is  ( )2 and thus  h( )2 for X∼ ∼G g h and  ∝ h
from above.

That is, larger hnecessitates larger  , leading to quadratically longer CPU time. In addition, parallelization
of the algorithmhelps only up to a point, as the (few) biggest events require asmuchCPU time as all the smaller
events taken together. The combination of all these factors has the unfortunate consequence that, for large
enough values of h, observing the  ∝ −g g( )g

s s
2

s regime is simply out of reach (even formoderate values of h,

such as h= 100, to show the crossover as clearly as infigure 2, a sample size as large as  = ×9 109 was
necessary, which required about 1810 h of CPU time).

3. Results

While it is straightforward to set up a recurrence relation for the generating function if the threshold is h=0, the
same is not true for >h 0. This is because the former setup (h=0) does not require an explicit implementation
of the absorbingwall since the process terminates naturally when =n g( ) 0 (there is no individual left that can
reproduce or die). If, however, >h 0, the absorbingwall has to be treated explicitly and that is difficult when the
evolution of the process (the effective diffusion constant) is a function of its state, i.e. the noise ismultiplicative.
In particular, amirror charge trick cannot be applied.

However, the process can bemapped to a simple randomwalk by ‘a change of clocks’, amethod detailed in
[16]. For the presentmodel, we observe that n(g) performs a fair randomwalk rt by a suitablemapping of the
generational timescale g to that of the randomwalker, =r g n g( ) ( )t with ∈ t g( ) . In fact, because of the
Poissonian nature of the BDprocess, birth and death almost surely never occur simultaneously and a suitable,
unique t(g) is found by =t (0) 0 and

ϵ ϵ ϵ ϵ+ − − = + − −
ϵ ϵ→ →+ +

t g t g n g n glim ( ) ( ) lim ( ) ( ) (1)
0 0

i.e. t(g) increases whenever n(g) changes and is therefore an increasing function of g.With thismap, rt is a simple
randomwalk along an absorbingwall at h, see figure 5. The challenge is to derive the statistics of the survival
times gs on the time scale of the BDprocess from the survival times ts on the time scale of the randomwalk.

Figure 4.Magnification of the right interval infigure 1. The clock starts when n(g) exceeds the threshold and stops when n(g) returns
to the threshold.

Figure 5.The same data as infigure 4 but on themapped time scale of the randomwalker, which evolves in equally spaced, discrete
steps. The survival time is necessarily odd, = −t T2 1s , ∈ T (ts=29 in this example).
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In the following, we first approximate some important properties of the survival times in a handwaving
manner before presenting amathematically sound derivation in section 3.2.

3.1. Approximation
The expectedwaiting time6 between two events in the BDP is n1 , if n is the current population size, with

= +n n hx such that nx is the excess of n above h. As discussed in detail in section 3.2, nx is a time-dependent
randomvariable, and so taking the ensemble average of thewaiting time is a difficult task. But on themore
convenient time scale t, the excess nx performs a randomwalk and it is in that ensemble, with that time scale,
wherewe attempt tofind the expectation


∑=

+=

−

( )
( )

g t h
n t h

;
1

( )
, (2)s s

t

t

x t0

1s

s

which is the expected survival time of a thresholded BDprocess given a certain return (or survival) time ts of the
randomwalker. In this expression nx(t) is a time-dependent randomvariable and the ensemble average 〈 〉· t( )s

is taken over all randomwalker trajectories  t( )s with return time ts. To ease notation, wewill include the
argument of  t( )s onlywhere necessary. Replacing the randomvariable gs by itsmean g t h( ; )s s , the PDFs for ts
and gs are approximately related via,

 ≈( ) ( )g
t

g t h t( )
d

d
; . (3)g

s
s

s s
t

ss s

Thismapwill bemade rigorous in section 3.2, avoiding the use of g t h( ; )s s in lieu of the random variable.
In amore brutal approach, onemay approximate the time dependent excess nx(t) in equation (2) by its

expectation conditional to a certain survival time ts,

  




+
=

+
+

−
+

=
+

+

h n t h n t n t n t

h n t

h n t

1

( )

1

( )

1

1
( ) ( )

( )

1

( )
(higher order terms) (4)

x x x x

x

x

so that the expected survival time g t( )s s given a certain return time ts is approximately + 〈 〉t h n t( ( ) )s x .
The quantity 〈 〉n t( )x is the expected excursion of a randomwalker, which is well-known to be


π≈n t t( )
8

(5)x s
1 2

in the continuum limit (with diffusion constant1 2 ) (e.g. [17, 18]). Thus

π
≈

+( )g t h
t

h t
;

8
. (6)s s

s

s

At small times, π≫h t 8s , the relation between gs and ts is essentially linear, ≈g t hs s , whereas for large times,

π≪h t 8s , the asymptote is π≈g t8s s .Writing the right-hand side of equation (6) in the form

π
π+

t8 s
h t

1

1 8 ( )s
2

allows us to extract the scaling of the crossover time. The argument of the square root is of

order unity when X π=t h8 2 , for which X π≈g t h h( , ) 4s .Moreover, one can read off the scaling form

≈ ( )( )g t h t t h; , (7)s s s s
1 2 2

with  π π= +x x( ) 8 (1 8 ( ) ) and asymptotes  ≈x x( ) for small x and  π=→∞ xlim ( ) 8x .
The PDF of the survival time


π

= −( )t
Dt

a

Dt

a

Dt

1

4
exp

4
(8)t

s
s s s

2
s

⎛
⎝⎜

⎞
⎠⎟

of a randomwalker along an absorbingwall is well-known to be a power law ∝ −ts
3 2 for times ts large compared

to the time scale set by the initial condition, i.e. the distance a of the randomwalker from the absorbingwall at
time t=0. The precise value of a is effectively determined by the details the continuum approximation, here
a=1, =D 1 2, and sowe require ≪ t1 2 s .

6
In a numerical simulation this would be the time increment.
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Toderive the PDF of the BDprocess, note that equation (6) has the unique inverse = π
π

t g( ) ( )s s

g h

g16

16s

s

2

,

where  = + + +y y y( ) 1 1 2 . Evaluating the crossover time by setting y=1 yields X π=g h16 . The PDF of
the survival time of the BDprocessfinally reads

  


π∼ −
′−

−( )g h y g
y y

y
;

16
( ) 2

( )

( )
, (9)g

s s

1 2
2s ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

where
π

=y
h

g

16

s

. For small y, the last bracket converges to 2, so  π∼ −g h g( ; ) 2 8g
s s

2
s for large gs. For large y,

the last bracket converges to 1, so  ∼ −g h h g( ; ) (1 )g
s s

3 2
s for small gs.

This procedure recovers the results in section 3.2: for π≪g h16s the PDF of the survival times in the BD

process goes like −gs
3 2, and for π≫g h16s like −gs

2, independent of h. Equation (9) also gives a prescription for

a collapse, since  g h g( ; )g
s s

2
s plotted versus g hs should, for sufficiently large gs, reproduce the same curve, as

confirmed infigures 7 and 8.
Applying a threshold introduces a new scale, πh16 , belowwhich the PDFdisplays a clearly discernible

power law, −gs
3 2, corresponding to the return time of a randomwalker. The ‘true’ −gs

2 power law behaviour (the
large gs asymptote) is visible onlywell above the threshold-induced crossover.

3.2.Detailed analysis
In the previous sectionwemade a number of assumptions, in particular the approximation of replacing the
randomvariable by its expectation, and the approximation in equation (4), which both require further
justification.

In the present sectionwe proceedmore systematically. In particular, wewill be concernedwith the statistics
of the BD survival time g ( )s given a particular trajectory  = …r r r{ , , , }t0 1 s of the randomwalk, where

= −t T2 1s , necessarily odd, ∈ T , see figures 5 andB1 .Wewill then relax the constraint of the trajectory and
study thewhole ensembleΩ of randomwalks terminating at a particular time −T2 1, denoting as Ωg T( ( ))s a
survival time drawn from the distribution of all survival times of a BDprocess with amapping to a random
walker that terminates at −T2 1or, for simplicity, just Ωg ( )s . This will allow us to determine the existence of a

limiting distribution for Ωg T( )s and tomake a quantitative statement about itsmean and variance.Wewill
notmake any assumptions about the details of that limiting distribution; in order to determine the asymptotes of
 g h( ; )g

s
s weneed only know that the limit exists.
For a given trajectory  of the randomwalk, the resulting generational survival time g ( )s may bewritten

as

 ∑ ξ= +
=

−

( )g r h( ) , (10)s
t

T

t t

0

2 2

where ξ α( )t is a randomvariable drawn at time t from an exponential distributionwith rate α, i.e. drawn from
α αξ−e , and rt is the position of the randomwalk at time t, with initial condition =r 10 and terminating at −T2 1
with =−r 0T2 1 (see figure B1).

Themean and standard deviation of ξt are +r h1 ( )t , necessarily finite, so that by the central limit theorem

the limiting distribution of g T( )s given a trajectory  is Gaussian (for ≫T 1 ). This ensures that

Ωg T( )s has a limiting distribution (see appendix C).
It is straightforward to calculate themean and standard deviation of g ( )s for a particular trajectory  that

terminates after −T2 1 steps. Slightlymore challenging is themean μ Ω( ) and variance σ Ω( )2 of Ωg ( )s for the
entire ensembleΩ of such trajectories. The details of this calculation are relegated to appendix B.Here, we state
only the key results. For themean of the survival time, wefind

μ Ω π ψ≃ +T h
h

T
( ) 2 2 (11)

⎛
⎝⎜

⎞
⎠⎟

(see equation (B.22)) with ψ π= −−x x ıx ı( ) e (Ei( ) ( ) )x2
and asymptotes

μ Ω π≃ ≫
≪

T T h

T h T h
( )

2 for

2 for
(12)

2

2

⎧⎨⎩
see equation (B.24). The variance is

 σ Ω μ Ω≃ − +T x x( ) ( ) ( ) ( ) (13)2 2
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(see equation (B.27)) with integrals  x( ) and  x( )defined in equation (B.28a) andwith asymptotes

σ Ω
π π

≃
− ≫

≪

T T h

T h T h

( )
4

3

3
for ,

2 for ,

(14)2
2

2 2

⎧
⎨⎪
⎩⎪

see equation (B.32). All these results are derived in the limit ≫T 1 inwhich themapped randomwalker takes
more than just a few steps, corresponding to a continuumapproximation. However, as shown in the following,
the results remain valid even forT close to one.

To assess the quality of the continuum approximation and the validity of the asymptotes, we extracted the
mean μ Ω T( ( )) and variance σ Ω T( ( ))2 of the survival time Ωg T( ( ))s from simulated BDPs startingwith a
population size = +n h(0) 1and returning to =n g h( )s after −T2 1updates (births or deaths), i.e. the
process was conditioned to a particular value ofT. In particular, we set the threshold at h=100, and simulated a
sample of 105 constrained BDPs for values = =T k2 , 0 ... 20k . The results are shown infigure 6 and confirm the
validity of the large ≫T 1approximation in equations (11) and (13), as well as the asymptotes (12) and (14).
Remarkably, as previously stated, equations (11) and (13) are seen to be valid evenwhen the condition ≫T 1
does not reasonably hold.

3.2.1. Distribution of gs
For largeT, the generational survival time gs given a survival time −T2 1of themapped randomwalk has PDF


σ Ω

Φ
μ Ω

σ Ω
≃

−
( )g h T

T

g T

T
; ;

1

( ( ))

( ( ))

( ( ))
, (15)g

s
s

2 2
s

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where Φ x( )denotes the limiting distribution of the rescaled survival time μ Ω σ Ω−g T T( ( ( ))) ( ( ) )s
2 , and

themean μ Ω T( ( )) and variance σ Ω T( ( ))2 are given by equations (11) and (13).We demonstrate thatΦ exists
andfind its precise (non-Gaussian) form in appendix C for completeness, but wewill not use this result inwhat
follows: to extract the asymptotic exponents and first order amplitudes, see below, knowledge of themean μ Ω( )
and variance σ Ω( )2 is sufficient.

As the ensembles Ω T( ) are disjoint for differentT, the overall distribution  g h( ; )g
s

s of survival

generational times is therefore given by the sumof the constrained distribution  g h T( ; ; )g
s

s weighted by the
probability of themapped randomwalk to terminate after −T2 1 steps. In the limit of largeT, as assumed
throughout, that weight is π−T (2 )3 2 [19]. Therefore

 ∑
π σ Ω

Φ
μ Ω

σ Ω
=

−

=

∞ −

( )g h
T

T

g T

T
;

2

1

( ( ))

( ( ))

( ( ))
. (16)g

s
T

s

1

3 2

2 2
s

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

To extract asymptotic behaviour for ≪T h2 and ≫T h2 wemake a crude saddle point, or ‘pinching’
approximation, by assuming that Φ x( ) essentially vanishes for ∣ ∣ >x 1 2 and is unity otherwise. This fixes the
randomwalker timeT via μ Ω− =g T( ( )) 0s , while the number of terms in the summation is restricted to

satisfy μ Ω σ Ω∣ − ∣ ⩽g T T( ( )) ( ( ))s
2 . After some algebrawe find


π

π

π

=

+ ≪

≪ ≪

≫

−

−

( )g h

h
g h

g

h
h g h

g g h

;

1

2
for 1 ,

2
for 1 8 ,

2 for 8 .

(17)g
s

s

s

s

3 2

2

s

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

The qualitative scaling of these two asymptotes was anticipated after equation (9). The crossover time

X π=g h8 , shown in figures 7 and 8, can be determined by assuming continuity of  g h( ; )g
s

s and thus imposing

X X=
π

− −g g2
h

1

2

3 2 2. Figure 7 shows  g h g( ; )g
s s

2
s versus g hs for varying h, comparingMonte Carlo simulations

for varying hwith the numerical evaluation of equation (16) for h=100, thus confirming the validity of the data
collapse proposed in equation (9). In particular, the shape of the transition between the two asymptotic regimes,
predicted to take place near X π=g h 8 , is recovered from equation (16)with great accuracy. As an alternative to
the numerical evaluation of equation (16), we introduce in appendixD a complementary approach that
provides the Laplace transformof  g h( ; )g

s
s , see equation (D.4). Unfortunately, inverting the Laplace transform

analytically does not seem feasible, but numerical inversion provides a perhaps simplermeans of evaluating
 g h( ; )g

s
s in practice.
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In addition to the two asymptotic regimes discussed so far, one notices thatfigure 8 displays yet another
‘regime’ (left-most, green shading), which corresponds to extremely short survival times. This regime is almost
exclusively due to thewalker dying on the firstmove via the transition = +n h(0) 1 to =n g h( )s . In this case,
the sum in equation (10) only has one term, and hence the PDF of gs can be approximated as

 = + ∼− + +g h h( ; ) ( 1)eg
s

h g h1

2
( 1) 1

2
s s , where the factor1 2 corresponds to the probability ofT=1, and the

limit of small gs has been taken. Thus, for very short times ≪g h1s , the PDF of gs is essentially ‘flat’. In order to
estimate the transition point to this third regime, we impose again continuity of the solution, so that

XX π+ = −h g h( 1) 2 23 2 and hence (dropping the constants) XX =g h1 , as shown in equation (17) aswell as
figures 7 and 8.

Given the three regimes shown infigure 7,  g h( ; )g
s

s can be collapsed either by ignoring the very short scale,
(see equation (9))

 ≃ ≫−
>( )( )g h g g h g h; 2 for 1 (18)g

s s s
2s

with  => x( ) 1 for large x and  π=> x x( ) (8 ) in small x, or according to

 
π

π≃ ≪
−

<( )g h
g

h
g h g h;

2
for 8 (19)g

s
s

s

3 2

s

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

with  =< x( ) 1 for large x and  π=< x x( ) 23 2 for small x. Power-law scaling (crossover) functions offer a
number of challenges, as they affect the ‘apparent’ scaling exponent [20]. Also, there is no hard cutoff in the
present case, i.e. moments ∫〈 〉 =g g g h gd ( ; )s

m
s

g
s s

m
s do not exist for ⩾m 2.

4. Summary anddiscussion

Themain goal of the present paper has been to understand how thresholding influences data analysis. In
particular, how thresholding can change the scaling of observables and howonemight detect this.

To this end, weworked through the consequences of thresholding in the BDP, which is known to have a
power-lawPDF of survival timeswith exponent γ = 2.We have shown, both analytically and via simulations,
that the survival times gs for the thresholded process include a new scaling regimewith exponent γ = 3 2 in the
range π≪ ≪h g h1 8s (see figure 8), where h is the intensity level of the threshold.

Wewould like to emphasize how difficult it is to observe the asymptotic γ = 2 exponent, even for such an
idealized toymodel. For large values of the threshold, =h 5000, sample sizes as large as 1010 are needed in order
to populate the histogram for large survival times. Real-worldmeasurements are unlikely tomeet the demand
for such vast amounts of data. An illustration of whatmight then occur for realistic amounts of data that are
subject to threshold is given by figure 2, where only the threshold-induced scaling regime associatedwith
exponent −3 2 is visible.

Intriguingly, a qualitatively similar scaling phenomenology is observed in renormalized renewal processes
with divergingmean interval sizes [21]. The randomdeletion of points (that, together with a rescaling of time,

Figure 6.Numerical comparison of the approximations equations (11) and (13) (shown as full lines), their asymptotes equations (12)
and (14) (dashed) and the numerical estimates based on a sample of 105 realizations per datapoint in aMonte-Carlo simulation of a
birth–death process constrained to −T2 1updates, with h=100 and = =T k2 , 0 ... 20k .
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constitutes the renormalization procedure) is analogous to the raising of a threshold. It can be shown that the
non-trivialfixed point distribution of intervals is bi-power law. The asymptotic scaling regime has the same
exponent as that of the original interval sizes. But, in addition, a prior scaling regime emerges with a different
exponent, and the crossover separating the two regimesmoves outwith increasing threshold.

A fundamental difference between theoreticalmodels and the analysis of real-world processes is that in the
former, asymptotic exponents are defined in the limit of large events, with everything else dismissed as
irrelevant, whereas real world phenomena are usually concernedwith finite event sizes. In our example, the
effect of the threshold dominates over the ‘true’ process dynamics in the range π≪ ≪h g h1 8s , and growswith

increasing h before eventually taking over thewhole region of physical interest.
Of course, real datamay not come from an underlying BDP. Butwe believe that the specific lessons of the

BDP applymore generally to processes withmultiplicative noise, i.e. a noise whose amplitude changes with the
dynamical variable (the degree of freedom). Let us cite two specific examples from the literature to illustrate our
point: in [22], Laurson et al apply thresholds to Brownian excursion, but since noise is additive in Brownian
motion, the asymptotic exponent of −3 2 is recovered at any threshold level. On the other hand, Larremore et al
[23] apply thresholds to networks of excitable nodes and critical branching processes, i.e. to processes with
multiplicative noise, and report strong effects of the threshold on the asymptotic exponents.

Figure 7.Collapse of the PDFs for different thresholds h for large ≫g h1s , plotting  g h g( ; )g
s s

2s against g hs , according to
equations (9) and (18), capturing equation (17). Symbols correspond to simulations at different threshold levels =h 20, 200, 500
and 2000. The black full lines indicate the asymptotes according to equation (17), the dashed lines show the crossovers at π=g h 8s

and =g h h1s
2 for h=100 . Finally, the black thick dashed line corresponds to the analytical solution computed from equation (16)

for h=100, while coloured full lineswere computed by numerically inverting the Laplace transform given in equation (D.4), see
appendixD. Another collapse is possible according to equation (19).

Figure 8.The PDF of survival times  g h( ; )g
s

s for h=100. Three scaling regimes partitioned by Xg (thin dashed line) and XXg (thin
dotted line) exist: for very short times ≪g h1s (green shading), the exponential waiting time to the first (death) event dominates, so
that  ∼ +g h h( ; ) ( 1) 2g

s
s . For ‘intermediate’ times (red shading) π≪ ≪h g h1 8s , the effect of the threshold dominates, and

hence  π∼ −g h g h( ; ) 2g
s s

3 2s . For long times (blue shading) π≫g h8s ,  ∼ −g h g( ; ) 2g
s s

2s , independently of h.Monte-Carlo
simulation results are shown as symbols, asymptotes of  g h( ; )g

s
s , equation (17), as solid lines, and the analytical solution  g h( ; )g

s
s ,

computed via equation (16) as a black thick dashed line, and via numerical inversion of the Laplace transform, equation (D.4), as a red
solid line.
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Indeed, in a process withmultiplicative noise, at large thresholds small changes of the dynamical variable are
negligible and an effectively additive process is obtained (the plain randomwalker in our example). Only for
large values of the dynamical variable is the original process recovered. These large values are rare, in particular
when another cutoff (such as, effectively, the sample size) limits the effective observation time ( −T2 1above).
In theworst case, thresholdingmay therefore bury the asymptotics whichwould only be recovered formuch
longer observation times.However, if the threshold can easily be changed, its effect can be studied systematically
by attempting a data collapse onto the scaling ansatz  = γ−g h g g h( ; ) ( )g

s s s
Ds , equations (9) and (18), with

exponents γ andD to be determined, as performed infigure 7with γ = 2 andD=1. The threshold plays an
analogous role to the system size infinite-size scaling (albeit for intermediate scales). In the present case, the
exponents in the collapse, together with the asymptote of the scaling function, identify two processes at work,
namely the BDP aswell as the randomwalk.
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AppendixA. Power lawfitting procedure

Weuse afitting procedure valid for both truncated and non-truncated power-law distributions [15, 24]. It is
based onmaximum likelihood estimation of the exponent, the KS goodness-of-fit test, andMonte Carlo
simulations.

A continuous randomvariable x is power-law distributed if its probability density is given by

γ= −
−γ γ

γ

− −
P x

a b x
( )

1

1

1
, (A.1)

1 1
⎜ ⎟⎛
⎝

⎞
⎠

where >a 0 and b are the lower and upper ends of the range, respectively. If b is finite, the distribution is
truncated, while if → ∞b , the distribution is non-truncated. In the latter case, γ > 1 is required for a
normalizable distribution.

The key tofitting power-law distributions properly to real-world data is to have an objective criterion for
decidingwhen the power law starts (and, in the truncated case, when it ends); this is thefitting range. Given a
sample …X X X, , , n1 2 , wewould like to estimate the parameter γ and determine the interval a b[ , ]where the
power-law holds. In order to obtain a reliable estimate of the exponent γ, we usemaximum likelihood
estimation, with a and b fixed. The log-likelihood reads

ℓ γ γ γ γ= −
−

− − ≠
γ−r

g

a
a( ) ln

1

1
ln ln , ( 1), (A.2)

1

where r= a/b and g is the geometricmean. The value γ̂ whichmaximizes ℓ γ( ) is themaximum likelihood
estimator of the exponent.

Having estimated γ, we quantify the goodness-of-fit via a KS test [25]. TheKS statistic is the absolute value
between the theoretical and empirical cumulative distributions, where the empirical cumulative distribution is
given by the fraction ofXi smaller than x, within the interval [a, b].

Using the γ̂ obtained from the data, we generate surrogate power law samples viaMonte Carlo in order to
assign a p-value to theKS statistic. Under the null hypothesis, the p-value is the probability that theKS statistic
takes a value larger than that obtained empirically. Next, we apply the same procedure for all possible ranges
a b[ , ]and retain thosefits (i.e., the triplets γa b{ , , ˆ}) with p-values greater than pc. In this analysis we have taken
pc=0.5, which is quite conservative. Under the null hypothesis, the p-value is uniformly distributed such that
half of the correctmodels would be rejected.

Finally, we select one fitting range among all the listed triplets. For non-truncated power laws ( = ∞b ), we
select the largest interval, i.e., the smallest a. For truncated power laws, one can either select the interval that
maximizes the number of data points containedwithin, or the size of the log-range b a, see [15] for a discussion.
In this analysis, we havemaximized the log-range, which tends to select power laws nearer to the tail of the
distribution.

Appendix B.Mean and variance of the survival time

This appendix contains the details of the calculations leading to the approximation (in largeT), equations (11)
and (13), as well as their asymptotes equations (12) and (14), for themean μ Ω( ) and the variance σ Ω( )2

11

New J. Phys. 17 (2015) 043066 F Font-Clos et al



respectively, averaged over the ensemble Ω T( ), orΩ for short, of themapped randomwalkswith the constraint
that they terminate at −T2 1, see figure B1.

In the following, wewill use the notation ξt for ξ +r h( )t t , but it is important to note that any two ξ +r h( )t t

are independent, even though the consecutive rt are not. The random variable g ( )s in equation (10) is thus a
sumof independent randomvariables ξt , whosemean and variance at consecutive t, however, are correlated due
to rt being a trajectory of a randomwalk. Because + >h r 0t for < −t T2 1, the limiting distribution of

  μ σ−g( ( ) ( )) ( )s
2 as → ∞T is aGaussianwith unit variance.Mean μ ( ) and variance σ ( )2 are

defined as

   ∑μ ξ= =
=

−

g a( ) ( ) , (B.1 )s
t

T

t

0

2 2

  
 

  ∑

σ

ξ ξ ξ ξ

= −

= −
′=

−

′ ′

( )g g

b

( ) ( ) ( )

(B.1 )

s s

t t

T

t t t t

2 2 2

, 0

2 2

and are functions of the trajectory with 〈 〉· taking the expectation across the ensemble of ξ for given, fixed
, i.e. ξ〈 〉 = +r h1 ( )t t and  ξ ξ〈 〉 − 〈 〉 = +r h1 ( )t t t

2 2 2. Because   ξ ξ ξ ξ〈 〉 = 〈 〉 〈 〉′ ′t t t t for ≠ ′t t the
mean and the variance are in fact just

 ∑μ =
+=

−

r h
a( )

1
, (B.2 )

t

T

t0

2 2

 ∑σ =
+=

−

( )r h
b( )

1
. (B.2 )

t

T

t

2

0

2 2

2

If ρ ( )n counts the number of times rt attains a certain level

 ∑ρ δ=
=

−

( ) (B.3)n
t

T

n r

0

2 2

, t

then δ ρ∑ = ∑ ∑ = ∑=
−

=
−

=
∞

=
∞f r f n f n( ) ( ) ( ) ( )t

T
t t

T
n n r n n0

2 2
0

2 2
0 , 0t

, so

 ∑μ
ρ

=
+=

− +

n h
a( )

( )
, (B.4 )

n r

T r
n

1

0

0

 ∑σ
ρ

=
+=

− +

n h
b( )

( )

( )
. (B.4 )

n r

T r
n2

1

2
0

0

wherewe used the fact that within time −T2 2 our randomwalker cannot stray further away from r0 than
− +T r1 0, as illustrated infigure B1.
In the same vein, we can nowproceed tofindmean and variance of gs over the entire ensemble Ω Ω= T( )of

trajectories  that terminate at −T2 1. In the following 〈 〉Ω· denotes the ensemble average over all
trajectories  Ω∈ , each appearingwith the same probability

Figure B1. Sample path of a randomwalk along an absorbingwall at 0. Thewalker starts at t=0 from r0 and terminates at −T2 1by
reaching thewall =−r 0T2 1 , i.e. =−r 1T2 2 . By construction, it cannot escape from the region demarcated by the dashed line.When
counting distinct paths, the number of paths terminating at =−r 0T2 1 equals the number of paths passing through =−r 1T2 2 .
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 ∑ξ
Ω

ξ=
Ω

( ) ( )f f
1

, (B.5)t t

where ξf ( )t is an arbitrary function of the randomvariable ξt .We therefore have

 




∑ ∑ ∑
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μ Ω ξ
Ω

Ω
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= =
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=
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=
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1 1

0

0

0

0

where ρ〈 〉Ω( )n is in fact the expected number of times a randomwalker terminating at −T2 1attains level n.
The variance turns out to require a bitmorework. The secondmoment




∑ ∑ ∑ξ
Ω

ξ ξ= =
Ω

Ω
=

−
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⎝
⎜⎜

⎞
⎠
⎟⎟

simplifies significantly when ≠ ′t t inwhich case the lack of correlationsmeans that the expectation factorizes

  ξ ξ ξ ξ〈 〉 = 〈 〉 〈 〉′ ′t t t t , so that we canwrite

    ∑ ∑ ∑ξ ξ ξ ξ ξ ξ= + −
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Obviously   ξ ξ ξ∑ 〈 〉 〈 〉 = ∑ 〈 〉′=
−

′ =
−( )t t

T
t t t

T
t, 0
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0

2 2 2
, but that is not a useful simplification for the time being.

The square of thefirstmoment, equation (B.6), is best written as
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Thefirst and the last pair of sums can bewritten as
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 
  


 

∑ ∑

∑ ∑

σ Ω
Ω

ξ ξ ξ

Ω
ξ ξ

= −

+ −

′ ′=

−

′ ′ ′

=

−

( )

( )

( )
1

1
. (B.12)

t t

T

t t t

t

T

t t

2
2

, , 0

2 2

0

2 2
2 2

In thefirst sum, the two terms can be separated into those in t′ and one in t. Using the same notation as above,
equation (B.3)we have

 
 ∑ ∑ξ ξ

ρ ρ
− =

− ′

′ +′=

−

′ ′ ′
′=

− +
′ ′

( )
( )

n h

( )
(B.13)

t

T

t t

n r

T r
n n

0

2 2 1

0

0

and 
ξ∑ 〈 〉 = ∑ ρ

=
−

=
− +

+t
T

t n r
T r

n h0
2 2 1 ( )n

0

0 .

13

New J. Phys. 17 (2015) 043066 F Font-Clos et al



The second sum recovers the earlier result in equation (B.4b), as ξ〈 〉 =
+t r h

2 2

( )t
2
and ξ〈 〉 = +t r h

1

t
, so that


 ∑ ∑ξ ξ

ρ
− =

+=

−

=

− +

( )
n h

( )

( )
(B.14)

t

T

t t

n r

T r
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0

2 2
2 2

1

2
0

0

and therefore

  
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  
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+
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=
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−
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+
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=
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−
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+
+

Ω Ω Ω
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=
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( )

1 ( ) ( )
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⎛

⎝
⎜⎜
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Wenowhave themean μ Ω( ), equation (B.6), and the variance σ Ω( )2 , equation (B.15), in terms of ρ〈 〉Ω( )n
and  ρ ρ〈 〉Ω′( ) ( )n n . In the following, wewill determine these two quantities and then return to the original

task offinding a closed-form expression for μ Ω( ) and σ Ω( )2 .

B.1. ρ〈 〉Ω( )n
and  ρ ρ〈 〉Ω′( ) ( )n n

Of the two expectations, ρ〈 〉Ω( )n is obviously the easier one to determine. In fact, ρ∑ = −T( ) 2 1n n implies

  ρ ρ ρ∑ 〈 〉 = − 〈 〉′ ′ T( ) ( ) (2 1) ( )n n n n , i.e. ρ〈 〉Ω( )n is a ‘marginal’ of  ρ ρ〈 〉Ω′( ) ( )n n .
To determine ρ〈 〉Ω( )n , we use themethod of images (ormirror charges). The number of positive paths

( >r 0i ) from =t r( 0, )0 to (t, n) are − + − + +
t

n r t
t

n r t

2 2
0 0

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ for + +n r t0 even and >n 0. By

construction, the number of paths passing through n= 0 is exactly 0, thereby implementing the boundary
condition. The set of paths (to be considered in the following)which terminate at time −T2 1by reaching

=−r 0T2 1 is, up to thefinal step, identical to the set of paths passing through −T(2 2, 1), i.e. =−r 0T2 1 . The
number of positive paths (seefigure B1) originating from =r(0, 1)0 and terminating at

= − =−t T r( 2 1, 0)T2 1 therefore equals the number of positive paths from =r(0, 1)0 to = − =t T n( 2 2, 1),

so that Ω∣ ∣ = −
− − − = −

−( ) ( ) ( )T
T

T
T

T
T

2 2
1

2 2 2 2
1T

1 ,which are theCatalan numbers [26, 27]. For =r 10 we

also have

− + − + + =
+

+
+ +

t
n t

t
n t n

t

t
n t1

2

1

2 1

1
1

2

(B.16)
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⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

again for + +n r t0 even. This is the number of positive paths from (0, 1) to (t, n) and by symmetry also the
number of paths from − −T t n(2 2 , ) to −T(2 2, 1), given that the walk is unbiased (see figure B1). If

ρ〈 〉Ωt( ; )n is the expected fraction of paths passing through (t, n) (illustrated in figure B1), we therefore
have


  

     

ρ =
−
−

+
+ +

− −
+ − −

Ω

Ω

+ − −

−

( )
( )t

T

T
T

t
n t

T t
n T t;

2 2
1

1
1

2

2 1
2 1

2

(B.17)n
n

t

n

T t

1

1

from(0,1) to (t, n)

2 1

from (t, n) to (2T 2, 1)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

which is normalized by construction, i.e. ρ∑ 〈 〉 =Ωt( ; ) 1n n . Thefirst binomial factor in the denominator is
due to the normalization, whereas of the last two, the first is due to paths from (0, 1) to (t, n) and the second due
to paths from (t, n) to − −T t(2 2 , 1). In the followingwe are interested in the fraction of times a random
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walker reaches a certain level during its lifetime,  ρ ρ〈 〉 = ∑ 〈 〉Ω Ωt( ) ( ; )n t n . Using

π≃ − −−( ) ( )a
b

a b2 ( 2) expa
a

a1 2 2

2

2
⎜ ⎟
⎛
⎝

⎞
⎠we find

ρ
π

≃
−

− −
−Ω

( )
( ) ( )

t
T n

t T t

n

t

n

T t
;

8

˜ 2 ˜
exp

2˜ 2 2 ˜
, (B.18)n

3 2 2

3 2 3 2

2 2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

wherewe have used ≫T 1and = +t t˜ 1. Simplifying further gives

 ∑ ∑ρ ρ ν
π τ τ

= ≃
−

−Ω Ω

ν
τ τ

=

−

=

−
−( )

( )
( )

t
T

T
( ) ; 8

exp

(2 )
(B.19)n

t n

T n

n
t n

T n

˜

2
2

˜

2
(2 )

3 2

2

with the sum running over the t̃ with the correct parity and τ = t T˜ and ν = n T . In the limit of large ≫T 1
wefind [28]


∫

ρ ν
π

τ
τ τ

ν=
−

−
=Ω

ν
τ τ ν

→∞

− −
( )

T
lim

( ) 4
d

exp

( (2 ))
4 e , (B.20)

T

n 2

0

2 (2 )

3 2

2

2

where the parity has been accounted for by dividing by 2. In the last step, the integral was performed by some
substitutions, as τ τ−(2 ) is symmetric about 1. It follows that in the limit of large ≫T 1

ρ ≃ −
Ω

n
n

T
( ) 4 exp . (B.21)n

2⎛
⎝⎜

⎞
⎠⎟

Using that expression in equation (B.6) gives equation (11), namely

∫ ∫

∑μ Ω ν

ν

ν ν

ν
ν ν

ν
π ψ

≃
+

≃
+

≃
+

= +

ν

ν ν

=

− +
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−
∞

−

T T h
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1
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e d
4

e 2 2 (B.22)
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with [29, equation 27.6.3]

∫ ⨍ψ π= − +−
−

∞ −
x s y

y
( ) e 2 d e d

e
, (B.23)x

x
s

x

y

0

2 2

2

⎛
⎝⎜

⎞
⎠⎟

wherewe have used =r 10 . The second integral is known as the exponential integral function

⨍ = −−
∞ −

y xd Ei( )x y

e y

and thefirst as (amultiple of) the imaginary error function 2 ∫π π=s ıx ıd e ( ) .
x s

0

2
In

the limit of large arguments x, the function ψ x( ) is π π− + − + + −x x x x x1 (2 ) 1 ( )2 3 4 5 , in the limit
of small arguments by γ + x2 ln( ), where γ is the Euler-Mascheroni constant.We conclude that

μ Ω π γ
π

≃ + + ≫
− + ≪

T h h T T h

T h T h T h T h
( )

2 2 ( 2 ln( )) for

2 2 for
(B.24)

2

3 2 2 2 3 2

⎪

⎪

⎧
⎨
⎩

(see equation (12)) providedT is large compared to 1, which is the key assumption of the approximations used
above. It is worth stressing this distinction:Thas to be large compared to 1 in order tomake the various
continuumapproximations (effectively continuous in time, so sums turn into integrals and continuous in state,
so binomials can be approximated byGaussians), but no restrictions weremade regarding the ratioT h2.

The correlation function  ρ ρ〈 〉Ω′( ) ( )n n can be determined using the samemethods, startingwith
equation (B.17):
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 

  
  

  

  

  
  

  

  
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Because both t and t′ are dummy variables, onemight be tempted towrite the entire expression as twice the first
double sum,which is indeed correct as long as ≠ ′n n . In that case, the case ′ =t t does not contribute because
the ‘middle chunk’ (from (t, n) to ′ ′t n( , ) ) vanishes. However, if = ′n n thatmiddle chunk is unity and therefore
needs to be included separately. This precaution turns out to be unnecessary once the binomials are
approximated byGaussians and the sums by integrals.

The resulting convolutions are technically tedious, but can be determined in closed formon the basis of
Laplace transforms and tables [29, equations 29.3.82 and 29.3.84], resulting finally in

 ρ ρ ≃ −
Ω′

− − + ′( )T( ) ( ) 8 e e (B.26)n n
n T n n T( )2 2

to leading order inT.
We proceed to determine equation (B.15) using equations (B.21) and (B.26) in the limit of largeT. Again, we

interpret the sums as Riemann sums, to be approximated by integrals, resulting in equation (13),

 σ Ω μ Ω≃ − +T x x( ) ( ) ( ) ( ) (B.27)2 2

with =x h T and

 ∫ π ψ=
+

= − + + −
∞ −

x n
n

n x
x x x a( ) d

4 e

( )
4 4 2(2 1) ( ), (B.28 )

n

0 2
2

2

 ∫ ∫= ′ −
+ ′ +

∞ − − + ′
x n n

n x n x
b( ) 16 d d

e e

( )( )
(B.28 )

n n n n

0 0

( )2 2

(for the definition of ψ x( ) see equation (B.23)). Unfortunately, wewere not able to reduce  x( ) further.
Because of the structure of equation (B.27), where  μ Ω−T x r( ) ( )2 scale linearly inT at fixed =x h T ,

whereas  x( ) remains constant, a statement about the leading order behaviour inT is no longer equivalent to a

16

New J. Phys. 17 (2015) 043066 F Font-Clos et al



statement about the leading order behaviour in x1 2. This is complicated further by the assumptionmade
throughout thatT is large. The limits we are interested in, are in fact ≫T h2 with ≫T 1and ≪ ≪T h1 2. In
the following, we need to distinguish not only large x from small x, but also different orders ofT.

It is straightforward to determine the asymptote of  x( ) in large x, where the denominator of the integrand

is dominated by x2 while the numerator vanishes at least as fast as −e n2
, because

− = − ′− − + ′ − − ′−e e e (1 e )n n n n nn n( ) 22 2 2
2

and ⩽ − ′ <− ′−0 (1 e ) 1nn n2
2

, so [28]
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Similarly, or using the expansion of ψ x( ) introduced above, we find  = + −x x x( ) 2 ( )2 3 . Since
μ Ω π= − + + ⋯T x x x( ) (2 2 )2 3 , thefirst two terms in the expansion of  x( ) for large x cancel, andwe
arrive at

 σ Ω π

π

= + + − + +

= + − + ⋯

( ) ( )
x

x T
x x

x

T

h h
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( )
2 34
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2 10 3
(B.30)
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for ≪T h2, containing the rather unusual looking (‘barely positive’, onemight say) difference π−10 3 . The
second term in equation (B.30) is clearly subleading in large x and no ambiguity arises in that limit, not even if

≫T 1.
The limit = →h T x 0, on the other hand,  x( ) is

 π= +x x( )
4

3
( ) (B.31)2

using [29, equation 27.7.6] so that  μ Ω π π− = − +T x T x( ) ( ) (4 3 4 ( ))2 2 , whereas
 γ= − − −x x( ) 4 ln( ) 4 2 diverges in small x. Although this latter term therefore dominates in small x, the
former,  μ Ω−T x( ) ( )2, does for large ≫T h2 atfinite, fixed h.

We are now in the position to determine the relevant asymptotes of σ Ω( )2 , as stated in (14),

σ Ω
π π

≃

− ≫

≪

T T h

T

h
T h

( )
4

3

3
for ,

2
for .

(B.32)2
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AppendixC. Limiting distribution of Ωg T( )
s

In this second appendix, we explicitly find the limiting distribution of Ωg T( )s .We begin by noting that, for

≫T 1, Ωg ( )s can be approximated as ∫Ω ≃ +g t( ) ds

T

x t h0

2 1

( )
, where x(t) performs a Brownian excursion of

length T2 . While for large but finiteT this is clearly an approximation (e.g. the exponential random variables
have been replaced by theirmean), in the limit of → ∞T the approximation becomes exact. In particular,
the ‘noise’ due to the variance of the exponential random variables scales like Tlog , see equation (B.28a),
and thus vanishes after rescaling with respect to T . In addition, owing to the scaling properties of Brownian
motion,

∫ ∫Ω =
+

=
→∞ →∞

g T t
x t h T

t
x t

lim ( ) lim d
1

( )
d

1

( )
, (C.1)

T
s

T 0

2

0

2

where x(t) is a Brownian excursion of length 2. Functionals of this kind have recently been discussed in detail in

[30]. Tofind the distribution of this quantity, wefirst define ∫= ′ ′y t t x t( ) d 1 ( )
t

0
, and the propagator
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Z x y x y t( , , , , )0 0 , i.e. the probability for a Brownian particle to go from x y( , )0 0 to (x, y) in time t, without
touching the line x=0.Using standard techniques [31], the associated Fokker–Plank equation for the
propagator takes the form

∂ + ∂ − ∂ =
x

Z x y x y t
1 1

2
( , , , , ) 0, (C.2)t y xx 0 0

⎡
⎣⎢

⎤
⎦⎥

with initial condition

δ δ= − −( ) ( ) ( )Z x y x y x x y y, , , , 0 , (C.3)0 0 0 0

and boundary condition

=( )Z y x y t0, , , , 0. (C.4)0 0

Taking the Laplace transformwith respect to t yields

δ δ+ ∂ − ∂ = −s
x

Z x y x s x x y
1 1

2
ˆ ( , , , ) ( ) ( ), (C.5)y xx 0 0

⎡
⎣⎢

⎤
⎦⎥

=( )Z y x sˆ 0, , , 0. (C.6)0

Wefirst solve the associated homogeneous equation, fromwhichwewill be able to construct the solution to the
inhomogeneous problem. After substituting the ansatz Ψ ρ=Z x y s x s y sˆ ( , , ) ( , ) ( , )hom , the equation separates
into

Ψ λ Ψ− ∂ + − =x s s x x s1 2 ( , ) ( ) ( , ) 0, (C.7)xx

ρ λρ−∂ + =( ) ( )y s y s, , 0, (C.8)y

where λ is an arbitrary real constant. Equation (C.7) is an eigenvalue problem forΨ x s( , )with respect to the

weight x1 . The solutions that vanish at infinity take the form Ψ λ∝ −λ
− ( )x s U s s x( , ) e 2 , 0, 2 2s x2 , but

only for λ = =s k k2 , {1, 2 ,...}k do they vanish at x=0. The correctly normalized eigenfunctions that satisfy
boundary conditions are therefore

Ψ =
−

−

− ( )
x s

U k s x

k k
( , )

e , 0, 2 2

!( 1)!
. (C.9)k

s x2

These functions are an orthonormal set with respect to theweight x1 , ∫ Ψ Ψ δ=∞
x x s x sd ( , ) ( , )j k x j k0

1
, , and the

corresponding closure relation reads Ψ Ψ δ∑ ′ = − ′=
∞ x s x s x x( , ) ( , ) ( )k k k x1

1 . One can use this to construct the
solution of the original equation. In particular

∑Θ Ψ Ψ=
=

∞
−Z x y x s y x s x sˆ ( , , , ) ( ) ( , ) ( , )e . (C.10)

k

k k
s ky

0

1

0
2

Wenow return to the original problemoffinding the probability of a Brownian excursionwith functional

∫ ′ ′ =x t t y t1 ( )d ( )
t

0
.Wemake use of the device ϵ= =x x0 , and let ϵ → 0 only after normalization. In short

Ω
ϵ ϵ

= =
ϵ ϵ→∞ → =

( )g T y
Z y t

Z
lim Prob ( ) lim

( , , , )
, (C.11)

T
s

t
0

2

where = −ϵ π
ϵ−Z (1 e )

t
t1

2
2 2

is thewell-known normalizing constant (see e.g. [18]). From (C.10) and

expanding for small ϵ= =x x0 termby term,wefind

∑
ϵ ϵ

π
Ψ ϵ

≃
−ϵ ϵ=

∞

−
−

( )
( )Z y s

Z
t

sˆ , , ,
2

( , )

1 e
e . (C.12)

k

k

t

s ky

1

2

2

2
2

Using the fact thatΨ ϵ ϵ≃s sk( , ) 8k
2 2 for small ϵ, wefinally arrive at

∑
ϵ ϵ

π ϵ
ϵ

π π

≃

=
−

=

ϵ ϵ ϵ→ → =

∞
−

( )

( )

( )

Z y s

Z
t

sk

t

s t t
s

s y

lim
ˆ , , ,

lim 2
8

2
e

4 2
e

e 1
2

sinh 2
. (C.13)
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Inverting terms involving s yields

∑

Ω

π π π

=

= −π

→∞

=

∞
−

=

( )

( )( )

g T y

t

y
k k t y

lim Prob ( )

2 2
(2 ) e (2 ) 3 (C.14)

T
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k t y
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3 2 2

6
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2 (2 ) 2 2 2

2

2 2
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

∑= −
=

∞
−

=
( )y

t
k k y t

2
e 3 . (C.15)
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⎤
⎦
⎥⎥

Thefirst equation is obtained by collecting residues fromdouble poles, and is useful for a small y expansion. The
second equation is obtained by expanding (C.13) and inverting termby term, and is useful for a large y
expansion. Both expressions converge rapidly and, evaluating at t=2, are in excellent agreement with
simulations, see figureC1.

AppendixD. Laplace transformof  g h( , )g
s

s

In thisfinal appendix, we take yet another route in the calculation of  g h( , )g
s

s byfinding its Laplace transform.
The key point in this approach is to approximate the embedded randomwalk of the process by standard
Brownianmotion. Therefore, we expect our approximation to hold as long as ≫T 1. The approach is very
similar in spirit to that of appendix C, but bothAppendices are self-contained and can be read independently.

Let x(t) denote the trajectory of a Brownian particle starting at =x x(0) 0, and tf itsfirst passage time to 0.
Thenwe argue that, in the Brownianmotion picture, the original observable of interest of the process gs
corresponds to the quantity h,

 ∫= tU x td ( ( )), (D.1)h

t

h
0

f

with = +U x x h( ) 1 ( )h . Effectively, the underlying exponential random variables ξ x t( ( )) are replaced by their
average. Such an approximation, which can be seen as a self-averaging property of the process, is well-justified
because (i) the Brownian particle visits any state infinitelymany times, and (ii) the exponential distribution has
finitemoments of any order.We are hence left with computing the distribution of the integral of a function
Uh(x) along a Brownian trajectory starting at =x x(0) 0 and ending at =x t( ) 0f . As usual, the problem ismost
conveniently solved by taking the Laplace transformof h (see the excellent review byMajumdar, [18]). In
particular, the Laplace transformof  ( )h , whichwe denote by  u h xˆ ( ; , )0 , fulfills the following differential
equation:

 ∂
∂

− =( ) ( )
x

u h x u U x u h x
1

2
ˆ ; , ( ) ˆ ; , 0 (D.2)h

2

0
2 0 0 0

with boundary conditions  =→∞ u h xlim ˆ ( ; , ) 0x 00 and  =→ u h xlim ˆ ( ; , ) 1x 0 00 . Note that this is a differential
equationwith respect to the initial position x0. The general solution to this differential equation is given by

FigureC1.The distribution of ∫=y t x td 1 ( )
0

2
, where x(t) is a Brownian excursion of length 2. The red full line is the analytical

result and black symbols correspond to simulations.
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+ +

− + +

( )
( )

( ) ( )

( ) ( )

C u h x I u h x

C u h x K u h x

2 2 2

2 2 2 , (D.3)

1 0 1 0

2 0 1 0

where I x( )1 and K x( )1 aremodified Bessel functions of thefirst and second kind respectively, andC1 andC2 are
constants to be determined via the boundary conditions. Because I x( )1 0 diverges for → ∞x0 ,C1must be zero,
andC2 is thenfixed via the other boundary condition. Finally, by setting =x 10 we reach a remarkably simple
expression for the Laplace transformof  g h( , )g

s
s ,

 =
+ +( )

( )
u h

u h K u h

uh K uh
ˆ ( ; )

( 1) 2 2 ( 1)

2 2
. (D.4)

1

1

This result is not only of interest in itself, but also provides a convenient way of evaluating  g h( , )g
s

s by
numerically inverting equation (D.4) (see figure 7 in themain text).We can also recover the asymptotic
exponents γ γ,1 2 of  g h( , )g

s
s directly from its Laplace transform, equation (D.4). To see this, we consider the

first and second derivatives of  u hˆ ( ; ),

−∂ ∼ ≪u h hu hˆ ( ; ) 2 ( ) for 1 , (D.5)u

∂ ∼ ≪u h
u

uˆ ( ; )
2

for 1. (D.6)uu

Thefirst equation assumes large h, while the second does not; this allows us to recover the two scaling regions
mentioned in themain text. Then it is easy to check that an application of a Tauberian theorem [32, p 192] leads
to equation (17) in themain text, recovering not only the asymptotic exponents γ γ,1 2, but also their associated
first order amplitudes.
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