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Finite-size scaling of survival probability in branching processes

Rosalba Garcia-Millan,!-2 Francesc Font-Clos,!-? and Alvaro Corra

11,3

lDepartament de Matematiques, Facultat de Ciencies, Universitat Autonoma de Barcelona, E-08193 Barcelona, Spain
2Deparl‘ament de Fisica, Facultat de Ciencies, Universitat Autonoma de Barcelona, E-08193 Barcelona, Spain
3Centre de Recerca Matematica, Edifici C, Campus Bellaterra, E-08193 Barcelona, Spain
(Received 14 November 2014; published 20 April 2015)

Branching processes pervade many models in statistical physics. We investigate the survival probability of a
Galton-Watson branching process after a finite number of generations. We derive analytically the existence of
finite-size scaling for the survival probability as a function of the control parameter and the maximum number of
generations, obtaining the critical exponents as well as the exact scaling function, which is G(y) = 2ye*/(e” — 1),
with y the rescaled distance to the critical point. Our findings are valid for any branching process of the
Galton-Watson type, independently of the distribution of the number of offspring, provided its variance is finite.
This proves the universal behavior of the finite-size effects in branching processes, including the universality of
the metric factors. The direct relation to mean-field percolation is also discussed.
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I. INTRODUCTION

Branching processes have become a very useful modeling
tool [1,2], originally in demography and population biology
[3], later in genetics and in the theory of nuclear reactions [4,5],
and more recently in seismology [6,7]. Important applications
in statistical physics have arisen due to the relationships
of branching processes with critical phenomena, through
percolation theory and self-organized criticality (SOC) [8-12].

Indeed, branching processes provide one of the simplest
examples of a second-order phase transition, equivalent to
percolation in the Bethe lattice, and therefore free of geo-
metric complexity [10]. These phase transitions (also called
continuous) are characterized by a sudden change of an
“order parameter” from zero to a nonzero value at precisely
a critical value of a “control parameter” [13,14]. This fact is
exploded in SOC theory, with mean-field sand-pile models
where avalanches propagate through a system by means of a
“critical branching process”; the peculiarity of SOC is that the
critical state is reached in a spontaneous, self-organized way
[10,15-17].

The common fact of criticality is the fulfillment of scaling
laws for the thermodynamic variables and the correlation
length & close to the critical point; e.g., in a magnetic system

[13],
m h
TNV A

and an analogous one for £|¢|”, where m is the dimensionless
magnetic moment per particle, which plays the role of order
parameter; ¢ is the reduced temperature; & is the reduced
magnetic field; B, A, and v are critical exponents; and g1
represents two scaling functions, one (+) for# > 0 and another
one (—) for ¢t < 0. The critical point is achieved att = h = 0.

A fundamental approach to analyze critical phenomena
is by means of finite-size scaling. It turns out to be that
the sharp change in the properties of a system at a critical
state is only possible in the thermodynamic limit (this is the
limit of infinite system size). However, in practice, computer
simulations cannot attain such a limit, for obvious reasons,
and one cannot infer the existence of a critical point from the
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results of computer simulations alone. Then, in a finite system
of size L an additional dependence appears, given by the ratio
&/L, which can be replaced by L|t|", yielding the ansatz

h 1
m=tPg. (W,LM”) = mg(aLA/“h,bL‘/”t), (1)

where g1 and G are bivariate scaling functions and a and b
are metric factors introduced to ensure universality [18]. The
previous scaling law is known as finite-size scaling. Note that,
in the case when ¢ and h appear linearly as arguments of the
scaling function, no distinction is made between ¢ > 0 and
t < 0 and a single scaling function G is enough for describing
both regimes. The reason is that in a finite system there is no
singularity at t = h = 0, where G is smooth and analytic [18].

In this paper we show that branching processes with size
limitations display finite-size scaling in the same way as in
critical phenomena. We are able to derive the exact form of the
scaling function as well as the critical exponents. In the next
section we review the basic language for branching processes,
whereas in the third one we apply it to finite-size branching
processes. In the last section some implications are discussed.

Usually, when the distance to the critical point is kept fixed,
the decay of the probability of surviving towards the infinite-
size case is exponential in L [1,2]. In contrast, the finite-size
scaling approach demonstrates, keeping fixed the distance to
the critical point in relative units of 1/L, a power-law decay
with L, resulting in a sort of law of corresponding states which
turns out to be valid for any system size L (provided that this
is large enough) and for any branching process of the Galton-
Watson type (provided a finite variance). This universality
[14,19] arises because, as we show, at the critical point the
only relevant quantity is the variance of the distribution that
defines the Galton-Watson process.

II. OVERVIEW OF PREVIOUS IMPORTANT RESULTS

For the connection of branching processes with critical
phenomena it is enough to consider simply the Galton-Watson
process [1]. This is started, in the zeroth generation of
the process, by one single element, which produces other
elements, called offspring, in a number given by a random
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variable K. The offspring of the initial element constitute the
first generation of the process, and each one of them produces
again a random number of offspring, which are the second
generation, and so on. The main ingredient of the model is
that the number of offspring of any element follows the same
distribution (that of K), and each of these random numbers is
independent from those of the other elements.

The first variable of interest is N;, which represents the
number of elements in each generation 7. The initial condition
is written then as Ny = 1. The key question in branching
processes is if the process gets extinct or not, and this is
represented by the event N, = 0; in particular, as extinction is
an absorbing state, all extinction events are included in N, = 0
with ¢+ — oo. Then the probability of extinction is

P, = lim Prob(N, = 0).
—00

At this point it is very useful to introduce the probability
generating function. Consider a generic discrete random
variable X which takes value O with probability pg, value
1 with pj, and value x with probability p,. The probability
generating function fx(z) is defined as

fr@ =Y pet = ("),
x=0

where the dependence of fx(z) is on z, and X indicates to
which random variable it corresponds (in our case X = K or
X = N;). Useful but straightforward properties of fx(z) are
the following: (i) fx(0) = po, (i) fx(1) =1, (i) fx(1) =
(X), (v) fx(D) = (X(X = 1), (V) fx(@) = 0in[0,1], and (vi)
¥(@) = 0 in [0,1], where the primes denote differentiation
(with respect to the variable z), and we assume those expected
values exist and are finite.
Applying the first of these properties to the variable N;, we
get, for the probability of extinction,

Pext = lim fN,(O)y
11— 00

which, as we will see, constitutes a great simplification of the
calculation. Using that N,y = ZINZ’I K, i, where K, ; is the
number of offspring of the ith element in the rth generation,
and that fy, (z) = fk(z), itis possible to derive a fundamental
theorem in branching processes, which is

v = fr(fx(... fx@)...) = fr ),

where the superindex r means composition ¢ times (not power).
This is valid because the K, ; are independent and identically
distributed [1,17]. Therefore, the probability of extinction turns
out to be

Pexl = lim f[l{(o),
11— 00

i.e., the repeated iteration of the origin z = 0 through the
function fg(z).

Using the rest of properties of probability generating
functions listed above it is possible to show that the probability
of extinction is given by P = g, where ¢ is the smallest
non-negative fixed point of f(z), i.e., we have fx(g) =gq.
For (K) < 1 it turns out to be that ¢ = 1 but for (K) > 1
one gets 0 < g < 1 [1,2,17]. As g varies continuously with
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(K) this reveals the existence of a continuous (or second-
order) phase transition in the system, with control parameter
(K) and with the probability of surviving to extinction, or
survival probability, Pyry = 1 — Pext = 1 — g, behaving as an
order parameter. This is zero below and at the critical point
(K) =1, and strictly positive above the critical point, when
q and therefore Pg, will depend on the parameters of the
distribution of K. The phase diagram of the Galton-Watson
process consists then of three regimes: subcritical, critical,
and supercritical, depending on the value of (K).

III. FINITE-SIZE EFFECTS

In contrast with that explained above, we consider here a
system with a limitation in size, that is, the limit of infinite
generations ¢ — oo cannot be reached and one has instead
an imposed maximum number of generations L, which we
identify with system size. We identify therefore t = L with the
boundary of the system. So all extinction events are included
in the boundary-extinction event, and then the probability of
extinction is given by Pex(L) = Prob(Ny = 0). One can see
that this value will be smaller than in an infinite equivalent
system, as extinction at t = L is a particular case of extinction
at t+ — oo. In any case, as in the infinite system, we will
have that the probability is given by the iteration of the origin
through f(z) = fx(z) [from now on, to ease the notation, we
drop the subindex K in fx(z)], i.e.,

Peu(L) = fy,(0) = £5(0).

So the fixed point ¢ will not be reached but instead we will
have that Pex(L) < q.

What we expect is that after a large number of generations
n (if L is also large), f"(0) will be close to the fixed point ¢,
i.e., ¢ — f"(0) will be close to zero. Then we will perform a
Taylor expansion of f[ f"(0)], considered a function of f"(0),
around the abscissa point ¢, that is,

AR OENIVEO)
= f(@ + f'@Lf"(©0) —q]
+ 3 @L"O0) = g + ...
up to second order. Using the fixed-point condition we can
rewrite
q— "0 = f'@lg — f"O] -5 (@lg — f"OF;
in other words, the distance d to the fixed point g at iteration
n + 1 is given by
dyy1 = Md, — Cd?

when n is large, defining M = f/(q) and C = f"(g)/2. Actu-
ally, it is simpler to iterate the inverse of the distance, which
at the lowest orders in d,, is

1 1 Cd,
= 1 + b
doy1  Md, M

and introducing the inverse of the distance, ¢, = 1/d,,,

cn+C
M M?

Cntl =
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It is easy to see that successive iterations lead to

Cn L& C 1+ L 1 T 1
Cp = — . _
VO VE M M
G c(1—MYH
- M M1 — M)’
using the formula of the geometric progression. From here
one can see that, for fixed M and large ¢, the decay of the
distance to the fixed point g is proportional to M*, and therefore

exponential in £ (we will see below that M < 1 except at the
critical point).

2

A. Subcritical and critical cases

Now we need to consider separately the three regimes.
First we deal with the subcritical phase, defined by (K) < 1,
for which the fixed point is ¢ = 1 and then, by the properties
of the probability generating function, M = f'(1) = (K) and

2C = f"(1) = (K(K — 1)) = 0> + (K)((K) — 1), where o
is the variance of K. This leads to
G o?(1 —(K)H 1—(K)*
it = (K)E T 2(K)5(1—(K)  2(K)¢

where we will introduce the rescaled distance to the critical
point (distance in units of 1/£!/V), as

y=07"(K) = 1),

this means that (K) = 1+ y/£!/V. Further, we will take £ —
oo, and then an interesting limit emerges for v = 1, yielding
(K)¢ — ¢”. In order to keep y finite we will impose that we
are in the vicinity of the critical point, (K) — 17. Notice that
in this limit only the middle term in the expression for ¢4,
survives, i.e.,

o1 —e)e
2eVy

and from here we can obtain the probability of surviving in a
system of limited size L =n + € as

Cpye = —

_ 2e’y
©oXer — DL’

where we have considered L > n, and so £ >~ L, and also have
taken the variance right at the critical point, ;.

One can realize that this result also includes the critical
case, given by M = (K) = 1, just taking the limit y — 0, for
which 2ye” /(e? — 1) — 2. This is in correspondence with the
replacement of Eq. (2) by ¢,+¢ = ¢, + C£. Therefore,

2
Poury(L) = 2

Psurv(L)= 1- Pext(L) =1 _fL(O) =

L’

at the critical point. This was apparently first proved by
Kolmogorov under more restrictive assumptions [1, p. 20],
[2, p. 19], [4, p. 47].

B. Supercritical case

We show now that the supercritical case leads, through
a more involving path, to exactly the same result as the
subcritical case. The main difference is that M is no longer
the derivative of f(z)atz = l butatz = g < 1. Letus expand
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by Taylor f(q) around ¢ = 1, i.e., close to the value of the
fixed point corresponding to the critical point,

flay=1+ g -+ 12 -1y =
which leads, for ¢ # 1, to
g=1—-——(K)—-1. (3)

f”(l)
Substituting in the Taylor expansion of f’(g), up to first order
ing — 1,
M= f(@)=(K)+ f"(D(g—1)=2—(K),

which is smaller than 1 as (K) > 1, and using that (K) =
1 + y/¢, allows one to calculate M* = e and 1 — M = y/{.
Notice that this looks the same as in the subcritical case but
replacing y by —y. Going back to Eq. (2),

o?(1 —e V)
Cppg = ————

n+t 26_)’y

when £ is very large, approximating 2C = f"(q) =
o2 + (K)((K) — 1), and therefore

[ =
L _ 2ye™Y
11O == Ba e

introducing the variance at the critical point, ;.
In order to obtain the probability of surviving, we need to
add 1 — ¢, which is, using Eq. (3),
1 (K)—1 (K) -1 (K)(K) — 1)
—q = =2 1— =
112 o2 a2

(i o
o2L o2L  o2L*)’

using also (K) — 1 = y/L. Therefore, the leading term in
P (L) turns out to be

1
Pan(L)=1—f"0)=1—-g+ —
CcL

1 2eVy 1 2ye”
— 2 — ,
03L<y+1—ey) o2L (ey—l>

which is the same indeed as in the subcritical case.

C. Finite-size scaling law

The previous formula, and its identical replication in
the subcritical and critical cases, allows one to write the
relationship between the probability of surviving and the
control parameter (K) in the form of a scaling law,

1
Paur(L) = —GIL(K) — D], “4)
Lo
with
2ye>

-1
a universal scaling function, as it is independent of the un-
derlying distribution of K (number of offspring per element).

This is valid for large system sizes L and small distances to
the critical point, keeping L({K) — 1) = y finite. Notice that

g(y) =
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FIG. 1. (Color online) Validity of the finite-size scaling law for the geometric Galton-Watson process. (a) Simulation results for the
probability of surviving as a function of the mean number of offspring (K) in a Galton-Watson process defined by a geometric distribution
of K, given by Prob[K = k] = p(1 — p)*, for k = 0,1, ... Different values of L show the dependence with system size. Probabilities are
estimated from 1000 independent realizations. (b) Same probabilities as a function of (K) — 1 under rescaling with L and o.. The collapse
of the curves onto a unique scaling function, given by our theoretical result, is the signature of the validity of the finite-size scaling for large

system sizes L and close to the critical point (K) = 1.

this corresponds to the usual finite-size scaling form, Eq. (1),
at zero field, h = 0, with exponents

B=v=1

(and metric factor b = 1). The only peculiarity is the appear-
ance of an additional metric factor given by o2. The validity
of the finite-size scaling law and its universality is confronted
with computer simulations of diverse branching processes in
Figs. 1 and 2, with positive results.

From the finite-size scaling law, it is remarkable that
keeping fixed the rescaled distance to the critical point, y,
the survival probability decays to zero with L as a power

12 T T
L =500 v
10 | L=1000 o } Binomial (N = 2)
L = 2000 o
L =500 °
g L L=1000 o } Binomial (N = 3) 4
. L=2000 o
2 L =500
oy 6 L = 1000 } Geometric 1
0"4 L = 2000
S L =500 o
4 L=1000 o } Poisson b
L = 2000 IN
5| 9 (y) |
0= L

FIG. 2. (Color online) Universality of the finite-size scaling. Ex-
tension of Fig. 1(b) to other Galton-Watson processes with different
distributions for the number of offspring K . In addition to the geomet-
ric case, the binomial distribution, with Prob[K = k] = N!p*(1 —
PV F/[KW(N — k)!] and N =2 or 3, and the Poisson distribution,
with Prob[K = k] = e *A/k!, are simulated for different (K) and
different system sizes L. The collapse of all rescaled curves validates
the universality of the scaling exponents and of our scaling function.

law, hyperbolically, see Eq. (4). In contrast, when the absolute
distance to the critical point, (K) — 1, is fixed, the decay is
exponential towards the infinite-size probability, Py (L) =
1 — g+ [f(¢)]",seeRefs. [1,p. 16]and [2, p. 38], and Eq. (2).

Interesting information comes from the different limit
behaviors of the scaling function,

—2ye” wheny — —oo0,
g(y) — 2 when y — 0,
2y when y — oo,
which yields
20721 — (K))e M=KD for (K) < 1,
Pgyry(L) — 200_2L_1 for (K) =1,
2((K) — 1)/0? for (K) > 1.

The subcritical and supercritical results have to be understood
as holding close to the critical point but for an infinitely large
system.

IV. DISCUSSION

As an illustration, let us particularize the finite-size scaling
law, Eq. (4), to the case where the number of offspring K of
each element is given by a geometric distribution (defined for
K > 0), with success parameter p. Then the mean and variance
are (K) = (1 — p)/p and 6> = (1 — p)/p?, the critical point
is at p. = 1/2, the variance at p. is 02 = 2, and the finite-size
scaling, Eq. (4), transforms into

1 1
Par(L) = ig [—4L (P - 5)] . )

A more relevant case is when the number of offspring
follows a binomial distribution, defined by the outcome of
N independent trials with probability of success p in each
trial. This leads to a direct connection to the problem of
percolation [8—10]. The mean and variance of K are given
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by (K) = Np and 6> = Np(1 — p) (notice that in this case
the parameter p has a different interpretation than for the
geometrical distribution). The critical point arises then at
pe = 1/N,witho? =1 — 1/N, and the finite-size scaling (4)
can be written as

1 1

Comparing this equation with the corresponding one for the
geometric case, Eq. (5), we see that the universality of Eq. (4)
becomes “diffused” due to the appearance of two nonuniversal
metric factors multiplying L. Clearly, the universal form given
by Eq. (4) is preferred. Figure 2 demonstrates this universal
finite-size scaling relation for the binomial and the geometric
distributions (including as well the Poisson distribution).

Itis worthwhile to delve into the analogy between branching
processes and percolation. This is established when one
considers the latter problem in the Bethe lattice [8,10], and
the branching process originates, as we have just mentioned,
from a binomial distribution of offspring. The probability p
of success in each reproductive trial is just the probability
of occupation in site percolation, and the number of trials N
is related to the coordination number Z of the Bethe lattice
by Z = N + 1; then, the survival probability becomes the
same as the probability of percolation. Under these conditions,
there are still a few differences between branching processes
and percolation. In the latter case, in order to establish the
probability of percolation, one considers the central site of
the Bethe lattice, which can be occupied or not and which is
connected (or not) through Z branches [8,10]. In branching
processes, this corresponds to the element of the 0 generation,
which, in contrast, is always present (Ny = 1) and only gives
rise, at most, to N = Z — 1 branches (this is the only element
that has no ancestor). Therefore, one has to correct for these
factors in order to obtain the percolation probability (in the
finite-size case) from here, and the way to do it is to take
care of the special role of the central site in percolation (in
comparison with branching processes).

In order to proceed, we consider the Bethe lattice (with L
generations) as composed by the central site plus Z separated
branching processes (with L — 1 generations, at most) [20].
For each of these branches, the probability of survival, or
of percolation, would be Py, (L — 1), if their initial element
were occupied for sure, but as it is occupied with probability
p the probability of survival becomes p Py, (L — 1). The
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probability that none of the Z branches survives (i.e., none of
them percolates) is [1 — p Py (L — )14, and the probability
of (at least one) survival starting from the origin is the final
probability of percolation [8,10],

Pperco(L) = p{1 = [1 = pPaun(L = DI?}
(taking into account that the origin is occupied with probability
p). Substituting here the universal scaling law, Eq. (4),
with L ~ L — 1, and expanding around p = p. = 1/N and
Pguv(L) = 0 we get

Poerco(L) = Zp? Pyuy(L) = GIL((K) — D),

(Z—-1)(Z-2)L
for percolation in the Bethe lattice, under the condition that
the central site is occupied with probability p.

Despite the different definitions of the probability of
survival, or of percolation, we see that neither the critical
exponents nor the scaling function depend on that. Note that,
strictly speaking, Pperco(L) is not the order parameter of the
percolation transition but its ensemble-average value, see, for
instance, Ref. [21]. Further, it is interesting to point out that the
problem of percolation has been extensively studied for ran-
dom networks [22,23]. The finite-size approach developed in
our paper could be extended to such random-network models.

Summarizing, we have found that the second-order phase
transition from sure extinction to nonsure extinction in the
Galton-Watson branching process fulfills a finite-size scaling
law, where the scaling function and the scaling exponents
can be exactly derived. If the variance of the distribution of
the number of offspring per element is taken into account
in the scaling law, this becomes universal, with universal
metric factors, in the sense that it is exactly the same for
all Galton-Watson branching processes. The results are also
valid for percolation in the Bethe lattice, which represents the
mean-field limit of the percolation problem.
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