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Quantifying the similarity between symbolic sequences is a traditional problem in information theory
which requires comparing the frequencies of symbols in different sequences. In numerous modern
applications, ranging from DNA over music to texts, the distribution of symbol frequencies is characterized
by heavy-tailed distributions (e.g., Zipf’s law). The large number of low-frequency symbols in these
distributions posesmajor difficulties to the estimation of the similarity between sequences; e.g., theyhinder an
accurate finite-size estimation of entropies. Here, we show analytically how the systematic (bias) and
statistical (fluctuations) errors in these estimations depend on the sample sizeN and on the exponent γ of the
heavy-tailed distribution. Our results are valid for the Shannon entropy (α ¼ 1), its corresponding similarity
measures (e.g., the Jensen-Shanon divergence), and also for measures based on the generalized entropy of
order α. For small α’s, including α ¼ 1, the errors decay slower than the 1=N decay observed in short-tailed
distributions. For α larger than a critical value α� ¼ 1þ 1=γ ≤ 2, the 1=N decay is recovered. We show the
practical significance of our results by quantifying the evolution of the English language over the last two
centuries using a completeα spectrumofmeasures.We find that frequent words changemore slowly than less
frequent words and that α ¼ 2 provides the most robust measure to quantify language change.
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I. INTRODUCTION

Quantifying the similarity of symbolic sequences is a
classical problem in information theory [1] with modern
applications in linguistics [2], genetics [3], and image
processing [4]. The availability of large databases of texts
sparked a renewed interest in the problem of similarity of
the vocabulary of different collections of texts [5–9]. For
instance, Fig. 1 shows the word-frequency distribution in
three large collections of English texts: from 1850,1900,
and 1950. We see that the distribution itself remains
essentially the same, a heavy-tailed Zipf distribution [11],

pðrÞ ∝ r−γ; ð1Þ

where p is the frequency of the rth most frequent word and
γ⪆1. Changes are seen in the frequency p (or rank) of
specific words; e.g., ship lost and genetic won popularity.
Measures that quantify such changes are essential to answer

questions such as the following: Is the vocabulary from
1900 more similar to the one from 1850 or to the one from
1950? How similar are two vocabularies (e.g., from differ-
ent years)? Are the two finite-size observations compatible

FIG. 1. The English vocabulary in different years. Rank-
frequency distribution pðrÞ of individual years t for t ¼ 1850,
1900, and 1950 of the Google-ngram database [10], multiplied by
a factor of 1, 2, and 4, respectively, for better visual comparison. The
insetshowstheoriginaluntransformeddata(sameaxis),highlighting
that the rank-frequency distributions are almost indistinguishable.
Individual words (e.g., “and,” “see,” “ship,” and “genetic”) show
changes in rank and frequency (symbols), where words with larger
ranks (i.e., smaller frequencies) show larger change.
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with a finite sample of the same underlying vocabulary?
How similar are the vocabularies of different authors or
disciplines? How fast is the lexical change taking place?
Heavy-tailed and broad distributions of symbol frequen-

cies such as Eq. (1) are typical in natural languages [11–16]
and appear also in the DNA (n-grams of base pairs for large
n) [17], in gene expression [18], and in music [19]. The
slow decay observed in a broad range of frequencies
implies that there is no typical frequency for words, and
therefore, relevant changes can occur in different ranges
of the p spectrum, from the few large-frequency words
all the way to the many low-frequency words. This imposes
a challenge to define similarity measures that are able to
account for this variability and that also yield accurate
estimations based on finite-size observations.
In this paper, we quantify the vocabulary similarity using

a spectrum of measures Dα based on the generalized
entropy of order α [Dα¼1 recovers the usual Jensen-
Shannon divergence]. We show how varying α magnifies
differences in the vocabulary at different scales of the
(heavy-tailed) frequency spectrum, thus providing different
information on the vocabulary change. We then compute
the accuracy (bias) and precision (variance) of estimations
of Dα based on sequences of size N and find that in heavy-
tailed distributions, the convergence is much slower than in
non-heavy-tailed distributions (it often scales as 1=Nβ with
β < 1). Finally, we come back to the problem of comparing
the English vocabulary in the last two centuries in order to
illustrate the relevance of our general results.

II. DEFINITION

Consider the probability distribution p ¼ ðp1; p2;…; pSÞ
of a random variable over a discrete, countable set of
symbols i ¼ 1;…; S (where later we include the possibility
for S → ∞). From an information theory standpoint, a
natural measure to quantify the difference between two
such probability distributions p and q is the Jensen-
Shannon divergence (JSD) [20]

Dð p; qÞ ¼ H

�
pþ q
2

�
− 1

2
Hð pÞ − 1

2
HðqÞ; ð2Þ

where H is the Shannon entropy [21],

Hð pÞ ¼ −X
i

pi logpi: ð3Þ

This definition has several properties that are useful in the
interpretation as a distance: (i) Dð p; qÞ ≥ 0, where the
equality holds if and only if p ¼ q, (ii) Dð p; qÞ ¼ Dðq; pÞ
(it is a symmetrized Kullback-Leiber divergence [20]),
(iii)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð p; qÞp

fulfills the triangle inequality and thus is a
metric [22], and (iv) Dð p; qÞ equals the mutual information
of variables sampled fromp andq [3]; i.e.,Dð p; qÞ equals the
average amount of information in one randomly sampled

word token about which of the two distributions it was
sampled from [23]. The JSD is widely used in the statistical
analysis of language [2], e.g., to automatically find individual
documents that are (semantically) related [5,6] or to track the
rate of evolution in the lexical inventory of a language over
historical time scales [7,8].
Here, we also consider the generalization of JSD in

whichH in Eq. (3) is replaced by the generalized entropy of
order α [24],

Hαð pÞ ¼
1

1 − α

�X
i

pα
i − 1

�
; ð4Þ

yielding a spectrumof divergencemeasuresDα parametrized
by α, first introduced in Ref. [25]. The usual JSD is retrieved
for α ¼ 1. In (nonextensive) statistical mechanics, Eq. (4)
was first proposed inRef. [26] andDα is sometimes called the
Jensen-Tsallis divergence. While similar generalizations can
be achieved with other formulations of generalized entropies
such as the Renyi entropy [4,27], the corresponding diver-
gences can become negative. In contrast, Dα is strictly non-
negative, and it was recently shown that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dαð p; qÞ

p
is a

metric for any α ∈ ð0; 2� [28]. For heavy-tailed distributions,
Eq. (1), Hα < ∞ for α > 1=γ.
We define a normalized version of Dα as

~Dαð p; qÞ ¼
Dαð p; qÞ
Dmax

α ð p; qÞ ; ð5Þ

where

Dmax
α ð p; qÞ ¼ 21−α − 1

2

�
Hαð pÞ þHαðqÞ þ

2

1 − α

�
ð6Þ

is the maximum possible Dα between p and q obtained by
assuming that the set of symbols in each distribution (i.e.,
the support of p and q) are disjoint. The main motivation for
using the measure (5) is that ~Dαð p; qÞ ∈ ½0; 1�, while the
range of admissible values ofDα depends on α. This allows
for a meaningful comparison of the divergences ~Dαð p; qÞ
and ~Dα0 ð p; qÞ for α ≠ α0 and therefore also for the full
spectrum of α’s. In general, the metric properties of Dα are
not preserved by ~Dα. An exception is the case in which the
rank-frequency distribution pðrÞ underlying all p’s and q’s
is invariant (see Fig. 1). Noting that Eq. (6) is independent
of the symbols, we obtain that Dmax

α ð p; qÞ is a constant for
all p’s and q’s, and therefore, the metric property is
preserved for ~Dα.

III. INTERPRETATION

In order to clarify the interpretation of Dα, it is useful to
consider a toy model. As in Fig. 1, we consider two
distributions p and q that have exactly the same rank-
frequency distribution pðrÞ but differ in (a subset of) the
symbols they use. For simplicity, we consider that symbols
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that differ in the two cases appear only in one of
the distributions. More precisely, denoting by Ip ¼
fA; B;C;D; E;…g the set of symbols in p, we define
the set of replaced symbols as I� ⊂ Ip. The set of symbols
in q is chosen as Iq ¼ fiji ∈ IpnI�g∪fi†ji ∈ I�g with
probabilities pi ¼ qi for i ∈ IpnI� and pi ¼ qi† for i ∈
I� (see Fig. 2 for one example).
For a given distribution p and a set of replaced symbols

I�, we compute Dαð p; I�Þ≡Dαð p; qÞ as

Dαð p; I�Þ ¼ cα
X
i∈I�

pα
i ; ð7Þ

where cα ¼ ð2ð1−αÞ − 1Þ=ð1 − αÞ. The maximum is
given by

Dmax
α ð p; I�Þ ¼ cα

X
i∈Ip

pα
i ð8Þ

such that

~Dαð p; I�Þ ¼
P

i∈I�p
α
iP

i∈Ipp
α
i
: ð9Þ

This shows that each symbol i ∈ I� that is replaced by a
new symbol contributes pα

i to Dα. It is thus clear that
by varying α, the contribution of different frequencies
becomes magnified (e.g., for α ≫ 1, large frequencies are
enhanced, while for α < 0 low frequencies contribute more
to Dα than large frequencies).
In particular, for α ¼ 0, ~Dα¼0ð p; I�Þ ¼ ½ðjI�jÞ=ðjIpjÞ�

is the fraction of symbols (types) that are different in p
and q. Each symbol i counts the same, irrespective of their
probabilities pi. For ½ðjI�jÞ=ðjIpjÞ� ≪ 1, ~Dα¼0ð p; I�Þ ¼
1 − JðIp; IqÞ, where JðIp; IqÞ ¼ ½ðjIp∩IqjÞ=ðjIp∪IqjÞ� is
the Jaccard coefficient between the two sets Ip and Iq, an
ad hoc defined similarity measure widely used in informa-
tion retrieval [2]. For α ¼ 1, ~Dα¼1ð p; I�Þ ¼

P
i∈I�pi,

showing that each replaced symbol is weighted by its
probability pi and thus that ~Dα¼1 measures the distance in
terms of tokens.

The full spectrum ~Dα offers information on changes
in all frequencies, a point which is particularly important
for the case of heavy-tailed distributions because word
frequencies vary over many orders of magnitude. Figure 3
illustrates how different values of α are able to capture
changes at different regions in the frequency spectrum. In
particular, it shows that ~Dα grows (decays) with α when the
modified symbols have high (low) frequency. Furthermore,
the comparison between two given changes allows us
to conclude about which change was more significant at
different regions of the word-frequency spectrum. In the
example of the figure, both changes (the two lines) are
equally significant from the point of view of the modified
tokens ( ~D1 are the same); the change in the left affects more
types ( ~D0 is larger), and the change in the right affects more
frequent words ( ~Dα is larger for α ≫ 1).

IV. FINITE-SIZE ESTIMATION

In this section, we turn to the estimation of ~Dα from data.
Even if ~Dα is defined with respect to distributions p and q,
Eq. (5), in practice, these distributions are estimated from
sequences with finite-size N (total number of symbols or
word tokens) yielding finite-size estimates of the distribu-
tions p̂ and q̂. The main obstacle in obtaining accurate
estimates of ~Dα is that it requires the estimation of entropies
for which, in general, unbiased estimators do not exist [29].
Accordingly, even if p ¼ q, in practice, Hαð p̂Þ ≠ Hαðq̂Þ
and ~Dαð p̂; q̂Þ > 0 are measured not only in single realiza-
tions but also on average (the bias). Besides the bias, we are
also interested in the expected fluctuation (standard
deviation) of the estimations of Hα and ~Dα and how both
depend

FIG. 2. Illustration of our toy model, where p (left diagram) and
q (right diagram) have the same rank-frequency distribution but
differ in the probability for individual symbols. In this example,
p and q are the same (pi ¼ qi) for i ∈ fA;C;D; E; F; G;Hg,
while the symbol i ¼ B in p is replaced by i ¼ B† in q with
pi¼B ¼ qi¼B† and pi¼B† ¼ qi¼B ¼ 0.

FIG. 3. The spectrum ~Dαðp; I�Þ for two different changes. The
lines correspond to Eq. (9) with pi ∝ i−1 with i ¼ 1; 2;…; 1000
and two different sets of replaced symbols I�1, I

�
2. Right inset:

I�1 ¼ f1g; i.e., only the symbol with the highest probability,
pi¼1 ≈ 0.13, is changed. Left inset: I�2 ¼ f368;…; 1000g;
i.e., the symbols with small probability are replaced. The
choice of I�2 was made such that

P
i∈I�

2
pi ≈ pi¼1 and therefore

~Dα¼1ðp; I�1Þ ≈ ~Dα¼1ðp; I�2Þ.
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on the sequence size N for large N. In heavy-tailed
distributions such as Eq. (1), these estimations are based
on an observed vocabulary V (number of different symbols)
that grows sublinearly with N as [30–32]

VðNÞ ∝ N1=γ: ð10Þ
This implies that the entropies in Eq. (4) are estimated
based on a sum of V → ∞ terms (for N → ∞). In practice,
γ and the precise functional form of the heavy-tailed
distribution are unknown, and therefore, besides ~Dα, the
estimation of Hα is also of interest (see Ref. [33] for the
case in which a power-law form of p is assumed to be
known a priori).

A. Analytical calculations

Here, we extend previous results [34–37] and generalize
them to arbitrary α. Given a probability distribution p and
the measured probabilities p̂ from a finite sample ofN word
tokens, we expand Hαð p̂Þ around the true probabilities pi
up to second order as

Hαð p̂Þ ≈Hαð pÞ þ
X

i∶ p̂i>0

ðp̂i − piÞ
α

1 − α
pα−1
i

− 1

2

X
i∶ p̂i>0

ðp̂i − piÞ2αpα−2
i ; ð11Þ

where we use ð∂Hα=∂piÞ ¼ α=ð1 − αÞpα−1
i and

ð∂2H=∂pi∂pjÞ¼−αpα−2
i δi;j. We then calculate E½Hαð p̂Þ�

by averaging over the different realizations of the
random variables p̂i by assuming that the absolute fre-
quency of each symbol i is drawn from an independent
binomial with probability pi such that E½p̂i� ¼ pi and
V ½p̂i� ¼ pið1 − piÞ=N ≈ pi=N, yielding

E½Hαð p̂Þ�≈Hαð pÞ− α

2N

X
i∈V

pα−1
i ¼Hαð pÞ−αVðαÞ

2N
; ð12Þ

which defines the vocabulary size of order α,

VðαÞ ≡X
i∈V

pα−1
i : ð13Þ

From Eq. (12), we see that the bias in the entropy
estimation jHαð pÞ − E½Hαð p̂Þ�j depends only on VðαÞ
and N. Similar calculations (see Appendix B) show that
the large-N behavior of the bias and the fluctuations
(variance) of Hα; Dα, and ~Dα can be written as simple
functions of VðαÞ and N, as summarized in Table I.
We now focus on the dependence of VðαÞ on N. The sumP
i∈V in Eq. (13) indicates that in N samples, on average,

V ¼ VðNÞ≡ Vðα¼1Þ different symbols are observed. If for
N → ∞ the vocabulary V converges to a finite value, VðαÞ
in Eq. (13) also converges and the bias scales as 1=N.
A more interesting scenario happens when V grows withN.
For the heavy-tailed case of interest here, V grows as N1=γ ,

Eq. (10), and we obtain (in Appendix C) that VðαÞ scales for
large N as

VðαÞ ∝
�
N−αþ1þ1=γ α < 1þ 1=γ

constant α > 1þ 1=γ;
ð14Þ

where γ > 1 is the Zipf exponent defined in Eq. (1) and α is
the order of the entropy in Eq. (4).
From the combination of Eq. (14) and Table I, we obtain

the scalings with sequence size N of the estimators of Hα,
Dα, and ~Dα in a heavy-tailed distribution with exponent γ.
These scalings are summarized in Table II. Three scaling
regimes can be identified for the bias and for the fluctua-
tions. (i) For large α, the decay is 1=N (except when p ¼ q,
where the fluctuations decay even faster as 1=N2) as in the
case of a finite vocabulary and short-tailed distributions.
(ii) For intermediate α, a sublinear decay with N is
observed. This regime appears exclusively in heavy-tailed
distributions and has important consequences in real
applications, as shown below. From the exponents of the
sublinear decay, we see that the bias decays more slowly
than the fluctuations. (iii) For small α, α < 1=γ, Hαð pÞ is
not defined; thus, the estimator for the mean of Hα and Dα

diverges. The growth of Hα (and therefore Dmax
α ) and Dα

with N has the same scaling, and therefore, they cancel
each other for ~Dα, in which case a convergence to a well-
defined value is found (the fluctuation of ~Dα still decays in
this regime).

B. Numerical simulations

Here, we perform numerical estimations of the normal-
ized divergence spectrum ~Dα that illustrate the regimes
derived above, we confirm the validity of the approxima-
tions used in their derivations, and we show that the same
scalings are observed for different entropy estimators. We
sample N symbols (tokens) twice from the same distribu-
tion ( p ¼ q), and therefore, ~Dα ¼ 0 and the expected value
E½ ~Dαð p̂; q̂Þ� is the bias. (The fact that the bias shows a
slower decay with N than the fluctuations makes these two
effects distinguishable also in this ~Dα ¼ 0 case because
E½ ~Dαð p̂; q̂Þ� ≫ V ½ ~Dαð p̂; q̂Þ� for large N).

TABLE I. Scaling of the bias jE½X̂� − Xj and the fluctuations
V ½X�≡ E½X̂2� − E½X̂�2 of estimations X̂. The results are valid for
large sequence sizes N and depend on the vocabulary of order α,
VðαÞ as in Eqs. (13) and (14). Results are shown for X ¼ Hα

[order α entropy, Eq. (4)], Dα [generalized divergence], and
~Dα [normalized divergence, Eq. (5)] (see Appendix B for the
derivations). For ~Dα, we approximate ~Dα ≈Dα=E½Dmax

α �.
Hα Dα, ~Dαðp ≠ qÞ Dα, ~Dαðp ¼ qÞ

Bias: VðαÞ=N VðαÞ=N VðαÞ=N
Fluctuations: Vð2αÞ=N Vð2αÞ=N Vð2α−1Þ=N2
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We start with the most important prediction of our
analytical calculations above: the existence in heavy-tailed
distributions of a regime for which the bias and fluctuations
of ~Dα decay with N more slowly than 1=N. This holds
already for α ¼ 1, i.e., for the usual Jensen-Shannon
divergence, previously shown for the bias of Hα¼1 in
Ref. [37]. One potential limitation of our analytical
calculations is that they are based on the plug-in estimator
obtained from replacing the pi’s in the generalized
entropies, Eq. (4), by the measured frequencies (i.e.,
pi↦p̂i ¼ Ni=N, with Ni being the number of observed
word tokens of type i). To test the generality of our results,
in the numerical simulations, we use four different estima-
tors of the Shannon entropy (i.e., α ¼ 1): (i) the plug-in
estimator, (ii) Miller’s estimator [34], which takes into
account the approximation obtained from the expansion
in Eq. (12), (iii) Grassberger’s estimator [38], and
(iv) a recently proposed Bayesian estimator described in
Ref. [39], which is an extension of the approach by
Nemenman et al. [40] to the case where the number of
possible symbols is unknown or even countably infinite
[41]. The numerical results in Fig. 4 show that the different
estimators are indeed able to reduce the bias of the
estimation but that the scaling of the bias with N remains
the same. In particular, the transition from the short-tailed
to the heavy-tailed distribution leads to the predicted
transition from N−1 (N−2) to the slower N−1þ1=γ (N−2þ1=γ)
decay for the bias (fluctuations) for all estimators. The only
exception is in the bias of the Bayesian estimator for the
exact Zipf’s law (1), but since this estimator shows a bad
performance for the fluctuation and for the real data, we

conclude that the slower scaling should be expected, in
general, also for this elaborated estimator. These results
confirm the generality of our finding that the bias and
fluctuation in ~Dα¼1 decay more slowly than 1=N in heavy-
tailed distributions. The consequence of this result to
applications will be discussed in the next section.
We now consider the estimation of ~Dα for α ≠ 1 in the

case of heavy-tailed distributions (1). The numerical results
in Fig. 5 confirm the existence of the three scaling regimes
discussed after Eq. (14) and in Table II. Panels (b) and
(d) show the relative reduction in the bias and fluctuations
achieved when the sequence size is doubled. For many
different α’s, the relative reduction is larger than 0.5 (0.25)
for the bias (fluctuations), a consequence of the slow decay
with N that shows the difficulty in obtaining a good
estimation of ~Dα. In practice, the exponent γ of the
distribution is unknown, such that the critical values of
α that separate these regimes (e.g., αE1 ¼ 1=γ and αE2 ¼
1þ 1=γ for the bias) cannot be determined a priori. Yet,
since γ > 1, we know that (i) αE1 ; α

V
1 < 1, and therefore Dα

for α ≥ 1 is such that Dαð p; pÞ ¼ 0 for N → ∞;
(ii) αE2 ; α

V
2 < 2, and therefore the bias and fluctuations of

Dα for α ≥ 2 decay as 1=N (or 1=N2 for the fluctuations in
the case of p ¼ q). This suggests Dα¼2 as a pragmatic
choice for empirical measurements because any further
increase in α will not lead to a faster convergence.

V. APPLICATION TO REAL DATA

In this section, we show the significance of the general
results of the previous section to specific problems.

TABLE II. Summary of finite-size scaling for distributions with heavy tails. Mean (E) and variance (V) of the
plug-in estimator of Hα, Dα, and ~Dα for samples p̂ and q̂ each of size N drawn randomly from p and q with power-
law rank-frequency distributions with exponent γ > 1, Eq. (1). The results are obtained by combining Table I with
Eq. (14) (for details see Appendixes B and C). The constant c depends on α and has a different value in each case but
is independent of N. The limit γ → ∞ corresponds to the case in which both p and q have short tails.

E½Hαð p̂Þ� E½Dαð p̂; q̂Þ� E½ ~Dαð p̂; q̂Þ�
αE1 1=γ 1=γ 1=γ

αE2 1þ 1=γ 1þ 1=γ 1þ 1=γ

α < αE1 cN−αþ1=γ cN−αþ1=γ c

αE1 < α < αE2 Hαð pÞ þ cN−αþ1=γ Dαð p; qÞ þ cN−αþ1=γ ~Dαð p; qÞ þ cN−αþ1=γ

α > αE2 Hαð pÞ þ cN−1 Dαð p; qÞ þ cN−1 ~Dαð p; qÞ þ cN−1

V ½Hαð p̂Þ� V ½Dαð p̂; q̂Þ� V ½ ~Dαð p̂; q̂Þ�
p ≠ q p ¼ q p ≠ q p ¼ q

αV1 1=ð2γÞ 1=ð2γÞ 1=ð2γÞ 1=γ 1=γ

αV2
1
2
ð1þ 1=γÞ 1

2
ð1þ 1=γÞ 1þ 1=ð2γÞ 1

2
ð1þ 1=γÞ 1þ 1=ð2γÞ

α < αV1 cN−2αþ1=γ cN−2αþ1=γ cN−2αþ1=γ cN−1=γ cN−1=γ

αV1 < α < αV2 cN−2αþ1=γ cN−2αþ1=γ cN−2αþ1=γ cN−2αþ1=γ cN−2αþ1=γ

α > αV2 cN−1 cN−1 cN−2 cN−1 cN−2
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FIG. 4. Finite-size estimation of the normalized Jensen-Shannon divergence ~D ¼ ~Dα¼1. (a)–(c) Estimation of E½ ~Dðp̂; q̂Þ� between two
sequences of size N drawn from the same distribution [i.e.,Dðp; qÞ ¼ 0] using four different estimators of the entropy (see text) for three
representative distributions: (a) Exponential (short-tailed) distribution pi ∝ e−ai for i ¼ 0; 1;… with a ¼ 0.1, (b) power-law (heavy-
tailed) distribution pi ∝ i−γ for i ¼ 1; 2;… with γ ¼ 3=2, and (c) empirical Zipf distribution of word frequencies, i.e., rank-frequency
distribution pðrÞ from the complete Google-ngram data, pi ¼ fði ¼ rÞ for i ¼ 1;…; 4623568, which is well described by a double
power law [11]. (d)–(f) The same as (a)–(c) for the fluctuations V ½ ~Dðp̂; q̂Þ�. The dotted lines show the expected scalings from Table II for
short-tailed distributions, i.e., N−1 (N−2), and power-law distributions, i.e., N−1þ1=γ (N−2þ1=γ), for the bias (fluctuations). In (c), we
show the expected scaling for the bias, VempðNÞ=N, where VempðNÞ is the expected number of different symbols in a random sample of
size N from the empirical distribution [32]. Averages are taken over 1000 realizations.

FIG. 5. Bias (a,b) and fluctuations (c,d) in the finite-size estimation of ~Dα. Estimation of E½ ~Dαðp̂; q̂Þ� between two sequences, each of
size N, drawn numerically from the same power-law distribution pi ∝ i−γ for i ¼ 1; 2;…; V → ∞ with γ ¼ 3=2 using the plug-in
estimator (pi↦p̂i) for the entropies of order α. (a) Scaling of the bias with N for different α. (b) Decrease of the bias in ~Dα when the
sample size is doubled (N↦2N) for different values of N as a function of α. (c,d) The same as (a) and (b) for the fluctuations
V ½ ~Dαðp̂; q̂Þ�. Red lines in all plots indicate the borders between the regimes, αE1 ¼ 1=γ ¼ 2=3, αE2 ¼ 1þ 1=γ ¼ 5=3 [for the bias in (a,b)]
and αV1 ¼ 1=γ ¼ 2=3, αV2 ¼ 1þ 1=ð2γÞ ¼ 4=3 [for the fluctuations in (c,d)]. Dotted lines indicate the predictions based on Table I for
α < αE1 , α

V
1 and α > αE2 , α

V
2 [in (a,c)] and all values of α [in (b,d)]. Averages are taken over 1000 realizations.
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A problem that appears in different contexts is to test
whether two finite-size N sequences, described by their
empirical distributions p̂ and q̂, have a common source
(null hypothesis). This involves the computation of a
single divergence ~Dαð p; qÞ, which is then compared to the
divergence ~Dαð p0; p0Þ between two finite-size (random)
samplings of a single (properly chosen) distribution p0
(e.g., p0 ¼ 0.5pþ0.5q). The probability of observing
~Dαð p0; p0Þ≥ ~Dαð p;qÞ is then reported as a p value [3].
Besides applications in language, e.g., comparing the
distribution of word frequencies, this problem appears in
the identification of coding and noncoding regions in DNA
[42].Thesignificanceofour results for finite-sizeestimations
in Sec. IV is that for the case of heavy-tailed distribution, the
expected ~Dαð p; qÞ of the null model may be much larger
than thepredictedvaluebasedona1=N decay (asobserved in
short-tailed distributions). If the slower convergence in N is
ignored, e.g., by applying standard tests [3] to heavy-tailed
distributions, one rejects the null hypothesis (low p value)
even if the data are drawn from the same source because
the measured distance will be much larger. The example in
Fig. 4(c) shows that, even when the size of both sequences is
on the order of N ≈ 105, the expected ~D1 (JSD) is
E½ ~Dα¼1ð p̂; q̂Þ� ≈ 10−1. This is 2 orders of magnitude larger
than for the exponential distribution in Fig. 4(a),
where E½ ~Dα¼1ð p̂; q̂Þ� ≈ 10−3.
The next problems we consider appear in the analysis

of historical data and in the quantification of language
change [43]. These problems are representative of problems
that involve the comparison of two or more divergences
~Dαð p; qÞ, obtained from different distributions p ≠ q and

α0 ≠ α. As depicted in Fig. 1, the different distributions
are obtained based on individual years (t ∈ f1850;
1900; 1950g), and we calculate the normalized spectrum
~Dαð pt1 ;pt2Þ between pairs of years ðt1; t2Þ. As argued in
Sec. II and Appendix A, ~Dαð p; qÞ is meaningful even if the
sequences used to estimate p and q have different sizes
Np ≠ Nq. We summarize our results in Fig. 6, from which
different conclusions can be drawn:
(a) Temporal change. The change of English from 1850

to 1950 was larger than the change from 1850 to 1900
and from 1900 to 1950, as seen from the fact that
the curve of ~Dαð p1850; p1950Þ in Fig. 6(a) lies above
the two other curves for all α. This intuitive result
(evolutionary dynamics show no recurrences) con-
firms that the divergence spectrum ~Dαð pt1 ;pt2Þ is a
meaningful quantification of language change. The
average dependency of ~Dαð p1850; p1950Þ on
Δt ¼ jt2 − t1j, shown in Fig. 6(b), can thus be used
as a quantification of the speed of language change.

We observe an approximate relationship ~DαðΔtÞ ≈
~DðiÞ
α þ ~DðiiÞ

α Δt2 for Δt ≫ 1 [see inset of Fig. 6(b)],

where ~DðiÞ
α and ~DðiiÞ

α are constants and can be related to
words that change because of fluctuations (finite
sampling or topical dependencies), which are
independent of Δt, and words that show a syste-
matic increase or decrease over Δt, respectively (see
Appendix D for a detailed discussion).

(b) Dependence on α. All observed divergences
~Dαð pt1 ;pt2Þ decay with α [e.g., the three curves in
Fig. 6(a)]. As discussed in Sec. III, this shows that for

FIG. 6. Measuring change in the usage of language on historical time scales. (a) ~Dαð pt1 ; pt2Þ as a function of α for pairs of
word-frequency distributions of the Google-ngram database obtained from the yearly corpora t1 and t2 with ðt1; t2Þ ∈
fð1850; 1900Þ; ð1900; 1950Þ; ð1850; 1950Þg (solid lines). The dotted lines with the same colors show the results of a null model in
which samples of the same size as the ones in t1 and t2 are randomly drawn from the same distribution (obtained from combining
the corpora in t1 and t2) mimicking a minimum distance that can be observed because of finite-size effects. The vertical lines show the
three regimes α < 1=γ, 1=γ < α < 1þ 1=γ, and α > 1þ 1=γ in the convergence of ~Dαð pt1 ; pt2Þ with N (see Sec. IV), obtained using

γ ¼ 1.77 [11]. Inset: Ratio ~Dαð pt12 ; pt12Þ= ~Dαð pt1 ; pt2Þ. (b) Average divergence as a function of Δt≡ jt2 − t1j, calculated as ~DαðΔtÞ ¼
ð1=NΔtÞ

P
2000−Δt
t1¼1805

~Dαð pt1 ; pt1þΔtÞ for four different α (solid lines). Shaded areas represent the standard deviation associated with the

average ~DαðΔtÞ. Inset:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~DαðΔtÞ

q
as a function of Δt, highlighting the approximate relationship ~DαðΔtÞ ∼ Δt2 for Δt ≫ 1.
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words with a high (low) frequency, the distributions are
more (less) similar and thus the change is slower (faster).
This result is consistent with previous works on the
evolution of individual words on historical time
scales reporting that frequent words tend to be more
stable [44,45]. This dependence on α is essential
when comparing the change from 1850 to 1900 to
the change from 1900 to 1950 [Fig. 6(a)]. While the
earlier change was smaller if counted on a token
basis, ~Dα¼1ð p1850; p1900Þ < ~Dα¼1ð p1900; p1950Þ, it be-
comes larger if one focuses on the more frequent
words ½ ~Dα¼2ð p1850; p1900Þ > ~Dα¼2ð p1900; p1950Þ].

(c) Role of finite-size scalings. Our finding that the
scalings (of the bias and of the fluctuations) in ~Dα

with sample size N depend on α allows for a
deeper understanding of the ~Dαðpt1 ; pt2Þ measure-

ments discussed above. The expected ~Dα’s for
random sampling of the same distribution [null
model shown as dashed line in Fig. 6(a)] are of
the same order as the empirical distance for small α
[i.e., ~Dαð pt12 ; pt12Þ ≈ ~Dαð pt1 ; pt2Þ], and it is only for
α > 1 that the null model divergence becomes
negligible compared to the empirical divergence
[i.e., ~Dαð pt12 ; pt12Þ ≪ ~Dαð pt1 ; pt2Þ]. This implies that
even though the size of the individual corpora is
of the order of N ≈ 109 word tokens, the empirically
measured ~Dα is still strongly influenced by finite-size
effects over a wide range of values for α, in agreement
with our analysis in Sec. IV. In particular, the bias for
the Jensen-Shannon divergence (α ¼ 1) is important
even for the case of the (extremely large) Google-
ngram database [e.g., the inset of Fig. 6(a) shows that
the bias is ≈10%].

(d) α ¼ 2 as a pragmatic choice. The slow decay of bias
and fluctuations with database size suggests that ~Dα¼2

is a pragmatic choice in reducing such finite-size
effects when the exponent γ in the power-law distri-
bution is not known. This conclusion is further
corroborated in the analysis of the dependence of
~Dα with Δt [Fig. 6(b)]. While ~DαðΔt ¼ 0Þ ¼ 0 by
construction, ~Dα does not converge to zero for Δt → 0

when extrapolating from ~DαðΔt > 0Þ, but instead it

seems to saturate, i.e., ~DαðΔt → 0Þ ≈ ~DðiÞ
α > 0. For

small values of α, ~DðiÞ
α is of the same order of

magnitude of the expected bias [e.g., shown as a
dashed line in Fig. 6(a)] and even of the same order of
magnitude of the divergence ~DαðΔt ¼ 100Þ between
two corpora separated by 100 years. For small α and
Δt, it is thus difficult to distinguish between finite-size
effects ( ~DðiÞ

α ) and actual language change. Results for
α ¼ 2 show the largest relative variation with Δt and

are therefore statistically more suited to quantify
language change over time.

VI. CONCLUSIONS

In summary, we investigated the use of generalized
entropies Hα to quantify the difference between symbolic
sequences with heavy-tailed frequency distributions.
In particular, we introduced a normalized spectrum of a
generalized divergence, ~Dαð p; qÞ in Eq. (5), that allows for
a comparison between the different distributions p and q
and also for different α’s. Increasing α, ~Dα attributes higher
weights to high-frequency symbols. The more complete
characterization given by the full spectrum ~Dα is particu-
larly important in the case of heavy-tailed distributions
because in this case, symbols do not have a characteristic
frequency but instead show frequencies on a broad range of
values.
Our main analytical finding is how the systematic

(bias) and statistical (fluctuations) errors of finite-size (N)
estimations of Hα and ~Dα scales with N (see Table II).
The existence of regimes in which these scalings decay
slower than 1=N shows that large uncertainties should be
expected in Hα and ~Dα, estimated even for very large
databases. This should be taken into account when
comparing two or more ~Dα’s and when estimating the
probability of two sequences having the same source.
The fact that for large α we recover the usual scaling
(decay with 1=N) suggests ~Dα¼2 as a pragmatic choice in
applications involving heavy-tailed distributions. Previous
works using information theoretic measures in language
used α ¼ 1 [5–8] and did not take into account the effect
of (finite) database size. Our results show that the bias
and fluctuations are significant even in the extremely
large Google-ngram database. It is therefore essential to
clarify what the role is of finite-size effects in the
reported conclusions, in particular, in the (typical) case
that database sizes change over time.
Our main empirical findings on language change are

as follows: (i) least-frequent words contribute more to the
total vocabulary change, (ii) the answer to the question of
whether the speed of language change is accelerating
depends on the emphasis that is given to either low-
frequency or high-frequency words, and (iii) the quantifi-
cation of the speed of vocabulary change in time, Δt, which
roughly shows a dependence ~DαðΔtÞ ≈ ~DðiÞ

α þ ~DðiiÞ
α Δt2,

where ~DðiÞ
α ( ~DðiiÞ

α ) quantifies the degree to which words
change due to fluctuations independent of time (systematic
increase or decrease of the frequency over time). More
generally, our spectrum ~Dα opens the possibility of study-
ing language change at different resolution, combining
aspects from the analysis on the level of individual words
(e.g., Refs. [44,45]) and the full vocabulary of a language
(e.g., Refs. [7,9]).
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Our results are also of interest beyond the cases treated
here. First, the finite-size scaling we derive appears already
in the entropy, and therefore, the same scalings are expected
in any entropy-based measure, including those based on
conditional entropies such as the Kullback-Leibler diver-
gence [1]. Second, the analysis is not necessarily restricted
to the word level; it can also be straightforwardly extended
to n-grams of words that also show heavy-tailed distribu-
tions [46]. Third, the spectrum of divergences ~Dαð p; qÞ
offers a unifying framework that can be applied to problems
involving different partitions of texts by varying the
parameter α. For example, while in document classification
[2] one tries to identify topical words (suggesting the use of
low values of α), in applications of authorship attribution
[47], it has been shown that the comparison of the most-
frequent (function) words yields the best results (suggesting
the use of large values of α). Fourth, heavy-tailed distri-
butions appear in different problems involving symbolic
sequences (e.g., in the DNA [17], in gene expression [18],
and in music [19]), and the significance of our results is
that they can be applied in all these cases.
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APPENDIX A: DOCUMENTS WITH
DIFFERENT LENGTHS

Here, we discuss how to proceed if the JSD is computed
from finite datasets with different finite lengths N, i.e., when
p (q) is estimated from a sequence of length Np (Nq ≠ Np).

1. Different weights

A possible way to extend Eq. (2), taking into account the
unequal contributionNp ≠ Nq, is to consider weights π as [3]

Dπ
αð p;qÞ¼HαðπppþπqqÞ−πpHαð pÞ−πqHαðqÞ; ðA1Þ

with πp ¼ Np=N andNq=N such that πp þ πq ¼ 1withN¼
NpþNq (denoted as natural weights in the following).
Obviously, if Np ¼ Nq then πp ¼ πq ¼ 1=2 and Dα is
recovered. The normalized distance (5) becomes

~Dπ
αð p; qÞ ¼

Dπ
αð p; qÞ

Dπ;max
α ð p; qÞ ; ðA2Þ

where

Dπ;max
α ð p; qÞ ¼ ðπαp − πpÞHαð pÞ þ ðπαq − πqÞHαðqÞ

þ 1

1 − α
ðπαp þ παq − 1Þ: ðA3Þ

Ourmain results for the finite-size scalingofDα summarized in
Table II remain valid for the weighted divergences.

The approach above follows Ref. [3], which introduced
weights to the usual JSD (non-normalized, α ¼ 1) and
showed that the natural weights πp ¼ Np=N and πq ¼
Nq=N imply certain useful properties for the JSD, e.g., that
the bias does not depend on the relative size of the two
samples. While their main motivation was to compare the
statistical significance of a single measurement of the JSD
in the identification of stationary subsequences (of possibly
different lengths) in a nonstationary symbolic sequence,
here, we are mainly interested in comparing two (or more)
measured distances. In this case, choosing weights that
depend on the size of the individual samples becomes
problematic when the sequences are of different lengths.
The demonstration that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dαð p; qÞ

p
is a metric for any

α ∈ ð0; 2� [28] is valid for fixed weights πp ¼ πq ¼ 1=2.
More generally, the measure Dπ

α itself depends on the
weights π such that Dπ

α and Dπ0
α constitute different

measures when π ≠ π0. It is therefore not meaningful to
compare Dπ

αð p; qÞ and Dπ0
α ð p0; q0Þ if Np=Nq ≠ Np0=Nq0

because this would imply that π0 ≠ π.

2. Equal weights

In the previous section, we argued that it is essential to
choose fixed weights π when comparing different distan-
ces. The choice of equal weights πp ¼ πq ¼ 1=2 can,
however, still be interpreted in the framework of natural
weights (πp ¼ Np=N, πq ¼ Nq=N) as the distance between
undersampled versions of the sequences. For given p and q
with Np ≠ Nq, we choose equal weights πp ¼ πq ¼ 1=2

FIG. 7. JSD-α for sequences of different lengths. Measurement
of ~Dαð p̂; q̂Þ between sequences p̂, q̂ of size Np

0 ¼ Nq
0 sampled

randomly from the empirical distribution of the Google-ngram of
the years t ∈ f1850; 1950g with different sizes, i.e., p ¼ pt¼1850

and q ¼ pt¼1950 with Np ≠ Nq, as a function of the sample size
N0 ¼ N0

p þ N0
q for different values of α. The dotted (dashed) lines

show ~Dπ
αð p; qÞ between the full distributions p and q with equal

(natural) weights, i.e., πp¼πq¼1=2 [πp ¼Np=ðNpþNqÞ≈0.22
and πq ¼ Nq=ðNp þ NqÞ ≈ 0.78 corresponding to the relative
size of p and q].
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yielding a distance D1=2
α ð p; qÞ. If we randomly draw

samples p0 and q0 of size Np
0 ¼ Nq

0 from the distributions
p and q, (by construction) the natural weights coincide with
the equal weights, i.e., π0p ¼ π0q ¼ N0

p=N ¼ N0
q=N ¼ 1=2,

and limN0
p¼N0

q→∞Dπ0
α ð p0; q0Þ ¼ D1=2

α ð p; qÞ.
In Fig. 7, we show the difference in ~Dπ

αð p; qÞ between
two empirical distributions from the Google-ngram with
different sizes (Np ≠ Nq) when choosing equal and natural
weights. Using equal weights corresponds to the case in
which we draw samples p̂ and q̂ that are of equal length
(Np

0 ¼ Nq
0) such that equal and natural weights coincide,

and taking the limit Np
0, Nq

0 → ∞.

APPENDIX B: FINITE-SIZE ESTIMATION
OF Hα, Dα, AND ~Dα

In this section, we present the calculations on the
mean (i.e., the bias) and the fluctuations in finite-size
estimates of Hα, Dα, and ~Dα. The starting point is a
finite sample p̂ ¼ ðn1=N; n2=N;…; nV=NÞ of size N
(where ni is the number of times symbol i was observed),
which we assume is obtained from N identical and
independent draws from the distribution p giving an
estimator for Hα:

Hαð p̂Þ ¼
1

1 − α

� X
i∶p̂i>0

p̂α
i − 1

�
: ðB1Þ

In order to take the corresponding expectation values, we
expand p̂α

i around the true probabilities pi up to second
order

p̂α
i ≈ pα

i þ ðp̂i − piÞαpα−1
i þ 1

2
ðp̂i − piÞ2αðα − 1Þpα−2

i

ðB2Þ
and average over the realizations of the random variables
p̂α
i by assuming that each symbol is drawn indepen-

dently from a binomial with probability pi such that
hðp̂i − piÞi ¼ 0 and hðp̂i − piÞ2i ¼ pið1 − piÞ=N ≈ pi=N
yielding [37]

hp̂α
i i ≈ pα

i þ
1

2N
αðα − 1Þpα−1

i : ðB3Þ

1. Hα

Combining Eqs. (B1) and (B3), we obtain for the mean

E½Hαð p̂Þ�≡ hHαð p̂Þi ¼
1

1 − α

� X
i∈hV p̂i

hp̂α
i i − 1

�

¼ 1

1 − α

� X
i∈hV p̂i

pα
i − 1

�
− α

2N

X
i∈hV p̂i

pα−1
i

¼ 1

1 − α
ðVðαþ1Þ

p̂ − 1Þ − α

2N
VðαÞ
p̂ ; ðB4Þ

where we introduce the notation
P

i∈hV p̂i indicating that
we average only over the expected number of observed
symbols hV p̂i in samples p̂.
For the variance, we get

V ½Hαð p̂Þ�≡ E½Hαð p̂Þ2� − E½Hαð p̂Þ�2

¼ 1

ð1 − αÞ2
X
i∈hV p̂i

X
j∈hV p̂i

ðhp̂α
i p̂

α
j i − hp̂α

i ihp̂α
j iÞ

¼ α2

ð1 − αÞ2N
X
i∈hV p̂i

p2α−1
i − α2

4N2

X
i∈hV p̂i

p2α−2
i

¼ α2

ð1 − αÞ2
Vð2αÞ
p̂

N
− α2

4

Vð2α−1Þ
p̂

N2
; ðB5Þ

where we used the fact that two different symbols i ≠ j are
independently drawn; thus,

P
i;jhp̂α

i p̂
α
j i¼

P
i≠jhp̂α

i ihp̂α
j iþP

ihp̂2α
i i.

2. Dα

For Dα, we have two samples p̂ and q̂ each of size N
randomly sampled from the distributions p and q such
that we can express the mean and the variance from
the expectation values of the corresponding individual
entropies.
Introducing the notation P≡ 1

2
ðpþ qÞ, we get for the

mean

E½Dαð p̂; q̂Þ� ¼ E½HαðP̂Þ� − 1

2
E½Hαð p̂Þ� − 1

2
E½Hαðq̂Þ�

¼ 1

1 − α

�
Vðαþ1Þ
P̂

− 1

2
Vðαþ1Þ
p̂ − 1

2
Vðαþ1Þ
q̂

�

þ α

2N

�
1

2
VðαÞ
p̂ þ 1

2
VðαÞ
q̂ − 1

2
VðαÞ
P̂

�
; ðB6Þ

where VðαÞ
P̂

denotes the generalized vocabulary, Eq. (13), for

the combined sequence P̂ ¼ 1
2
ð p̂þ q̂Þ, which is of

length 2N.
For the variance, we get

V ½Dαð p̂; q̂Þ�≡ E½Dαð p̂; q̂Þ2� − E½Dαð p̂; q̂Þ�2

¼ V ½HαðP̂Þ� þ
1

4
V ½Hαð p̂Þ� þ

1

4
V ½Hαðq̂Þ�

− Cov½HαðP̂Þ; Hαð p̂Þ þHαðq̂Þ�; ðB7Þ

where Cov½X; Y�≡ E½XY� − E½X�E½Y�. We evaluate the
covariance term in two different ways, i.e.,
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ð1 − αÞ2Cov½HαðP̂Þ; Hαð p̂Þ þHαðq̂Þ� ¼
� X

i∶ p̂iþq̂i>0

P̂α
i

� X
j∶ p̂j>0

p̂α
j þ

X
j∶ q̂j>0

q̂αj

��
−
� X

i∶ p̂iþq̂i>0

P̂α
i

�

×

�� X
j∶ p̂j>0

p̂α
j

�
þ
� X

j∶ q̂j>0

q̂αj

��

¼
� X

i∶p̂iþq̂i>0

P̂α
i

X
j∶p̂jþq̂j>0

ðp̂α
j þ q̂αj Þ

�
−
� X

i∶ p̂iþq̂i>0

P̂α
i

�� X
j∶ p̂jþq̂j>0

ðp̂α
j þ q̂αj Þ

�

¼
X
i∈hVP̂i

fhP̂α
i ðp̂α

i þ q̂αi Þi − hP̂α
i iðhp̂α

i i þ hq̂αi iÞg ðB8Þ

and

ð1 − αÞ2Cov½HαðP̂Þ; Hαð p̂Þ þHαðq̂Þ� ¼
� X

i∶ p̂iþq̂i>0

P̂α
i

X
j∶ p̂j>0

p̂α
j

�
−
� X

i∶ p̂iþq̂i>0

P̂α
i

�� X
j∶ p̂j>0

p̂α
j

�

þ
� X

i∶ p̂iþq̂i>0

P̂α
i

X
j∶ q̂j>0

q̂αj

�
−
� X

i∶ p̂iþq̂i>0

P̂α
i

�� X
j∶ q̂j>0

q̂αj

�

¼
X
i∈hV p̂i

fhP̂α
i p̂

α
i i − hP̂α

i ihp̂α
i ig þ

X
i∈hV q̂i

fhP̂α
i q̂

α
i i − hP̂α

i ihq̂αi ig: ðB9Þ

Similarly as in Eq. (B3), we can approximate

hP̂α
i i ≈ Pα

i þ
αðα − 1Þ

4N
Pα−1
i ;

hP̂α
i p̂

α
i i ≈ Pα

i p
α
i þ

α

4N
ð3α − 1ÞPα−1

i pα
i þ

α

2N
ðα − 1ÞPα

i p
α−1
i ;

hP̂α
i q̂

α
i i ≈ Pα

i q
α
i þ

α

4N
ð3α − 1ÞPα−1

i qαi þ
α

2N
ðα − 1ÞPα

i q
α−1
i : ðB10Þ

From this result, we get for the variance of Dα

V ½Dαð p̂; q̂Þ� ¼
X
i∈hVP̂i

�
α2

ð1 − αÞ2
1

2N
Pα−1
i

	
Pα
i − 1

2
ðpα

i þ qαi Þ


− α2

16N2
Pα−1
i ½Pα−1

i − ðpα−1
i þ qα−1i Þ�

�

þ 1

2

X
i∈hV p̂i

�
α2

ð1 − αÞ2
1

2N
pα
i ½pα−1

i − Pα−1
i � − α2

8N2
pα−1
i ½pα−1

i − Pα−1
i �

�

þ 1

2

X
i∈hV q̂i

�
α2

ð1 − αÞ2
1

2N
qαi ½qα−1i − Pα−1

i � − α2

8N2
qα−1i ½qα−1i − Pα−1

i �
�
: ðB11Þ

Now we can see that for p ¼ q ¼ P, we get

V ½Dαð p̂; q̂Þ�p¼q ¼
X
i∈hVP̂i

1

16N2
α2p2α−2

i ¼ α2

16N2
Vð2α−1Þ
P̂

:

ðB12Þ

While for arbitrary p and q the variance of the Dα contains

the variances of the individual entropies (e.g., Vð2αÞ
P̂

=N) and
a covariance term, (only) in the special case p ¼ q do all

first-order terms (1=N) vanish, yielding a qualitatively

different behavior Vð2α−1Þ
P̂

=N2.

3. ~Dα

The finite-size estimation of ~Dα can be obtained approx-
imately by

~Dαð p̂; q̂Þ ¼
Dαð p̂; q̂Þ

Dαð p̂; q̂Þmax
≈

Dαð p̂; q̂Þ
E½Dmax

α ð p̂; q̂Þ� ðB13Þ
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such that

E½ ~Dαð p̂; q̂Þ� ≈
E½Dαð p̂; q̂Þ�
E½Dmax

α ð p̂; q̂Þ� ;

V ½ ~Dαð p̂; q̂Þ� ≈
V ½Dαð p̂; q̂Þ�

E½Dmax
α ð p̂; q̂Þ�2 : ðB14Þ

The mean of Dmax
α is given according to Eq. (6) as a linear

combination of the individual entropies of p̂ and q̂,

E½Dmax
α ð p̂; q̂Þ� ¼ 21−α − 1

2

�
E½Hαð p̂Þ� þE½Hαðq̂Þ� þ

2

1− α

�
:

ðB15Þ

APPENDIX C: DERIVATION OF EQ. (14)

In this section, we derive the scaling of the generalized
vocabulary VðαÞ defined in Eq. (13) assuming that p is a
power law of the form pi ∝ i−γ , Eq. (1). Instead of looking
at the probability of individual symbols i, we consider
the distribution of frequencies n, which in this case
yields pðnÞ ∝ n−1−1=γ [48]. Consider the sum

P
i∈Vpi ¼

ð1=NÞPi∈Vni ¼ ð1=NÞSVðγÞ, where SVðγÞ corresponds to
the sum of V independent and identically distributed
random variables ni (i ¼ 1;…; V) drawn from the distri-
bution pðnÞ. It can be shown that [49]

SVðγÞ ∝
�

Vγ γ > 1

V γ < 1
: ðC1Þ

The case γ ¼ 1 includes additional logarithmic corrections
but is not of relevance for the discussion; therefore, for
the sake of simplicity, we do not discuss it here. In the
same way, we can treat

P
i∈V p

μ
i ¼ ð1=NμÞPi∈V n

μ
i ¼

ð1=NμÞSVðγμÞ by noting that SVðγμÞ can be interpreted
as the sum of V independent and identically distributed
random variables ni (i ¼ 1;…; V), where ni ∼ ~pðnÞ with
~pðnÞ ∝ n−1−1=ðγμÞ such that we get

SVðγμÞ ∝
�
Vγμ μ < 1=γ

V μ > 1=γ:
ðC2Þ

By setting μ ¼ α − 1 in Eq. (13) and noting that for
pi ∝ i−γ, Eq. (1), the number of different symbols scales
as V ∝ N1=γ, Eq. (10), we obtain Eq. (14).

APPENDIX D: TEMPORAL EVOLUTION
OF ~DαðΔtÞ

We are interested in understanding the dependence of
~DαðΔtÞ≡ ~Dαðt0; t0 þ ΔtÞ on Δt [we assume ~DαðΔtÞ is the
same for all t0]. The triangle inequality implies that

~DαðΔtÞ ≤
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~DαðΔt − 1Þ
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~DαðΔt ¼ 1Þ

q �
2

≤ ðΔtÞ2 ~DαðΔt ¼ 1Þ: ðD1Þ

In order to consider the origin of different Δt dependencies
within the general bound given by Eq. (D1), we consider
two classes of words subject to frequency change in Δt:
(i) words that show fluctuations (e.g., finite sampling or
topical dependencies), which do not depend on Δt and
(ii) words that show a systematic increase or decrease
over all t. If we assume that all words that change fall in one
of these classes, we can use the fact that ~Dα is defined as a
sum of word types and decompose the total change ~Dα

as ~Dα ¼ ~DðiÞ
α þ ~DðiiÞ

α , where ~Dði;iiÞ
α is the divergence of all

words falling into class (i) or (ii), respectively. For category
(ii), the changes between consecutive years are indepen-
dent; thus, the equality case of the triangle inequality is

obtained:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Dαðt0; t2Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Dαðt0; t1Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Dαðt1; t2Þ

q
for all

t1, with t0 ≤ t1 ≤ t2. Therefore, we obtain a quadratic
dependence on Δt as

~DαðΔtÞ ¼ ~DðiÞ
α þ ~DðiiÞ

α ðΔt ¼ 1ÞðΔtÞ2: ðD2Þ
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