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Probing spermiogenesis: a digital 
strategy for mouse acrosome 
classification
Alessandro Taloni1,2,3, Francesc Font-Clos4, Luca Guidetti1,5, Simone Milan  1,4,5, Miriam 
Ascagni6, Chiara Vasco7, Maria Enrica Pasini6, Maria Rosa Gioria6, Emilio Ciusani7, Stefano 
Zapperi  1,2,4,8,9 & Caterina A. M. La Porta  1,5

Classification of morphological features in biological samples is usually performed by a trained 
eye but the increasing amount of available digital images calls for semi-automatic classification 
techniques. Here we explore this possibility in the context of acrosome morphological analysis during 
spermiogenesis. Our method combines feature extraction from three dimensional reconstruction 
of confocal images with principal component analysis and machine learning. The method could be 
particularly useful in cases where the amount of data does not allow for a direct inspection by trained 
eye.

Spermatogenesis is a dynamic process during which undifferentiated diploid stem cells mature to differenti-
ated haploid cells called spermatozoa. Mammalian spermatogenesis occurs within the seminiferous tubules and 
consists of three phases: a mitotic phase in which spermatogonia divide mitotically; a meiotic phase in which 
spermatocytes divide to form haploid round spermatids and a third phase, called spermiogenesis, in which sper-
matids encompass morphological changes including acrosome formation, chromatin condensation, and flagel-
lum development resulting in the formation of spermatozoa1–7.

A key element of spermiogenesis is the mammalian sperm acrosome, an exocytotic vesicle present on the api-
cal surface of the head8, 9 whose correct formation is crucial for the successful fertilization of the egg10. Acrosomal 
biogenesis takes place at the initial step of spermiogenesis and can be divided into four phases that cumulatively 
complete in about 2 weeks in the mouse and in 1 month in the humans8–15. In rodent spermatids, proacrosomal 
vesicles (granules) containing a variety of proteins assemble and fuse to form a single sphere acrosomal granule 
in the center of the acrosomal vesicle at the Golgi phase. At the cap phase, the acrosomal granule forms a head 
cap-like structure that gradually enlarges to cover the nucleus. The head cap continues to elongate outlining the 
dorsal edge, protruding apically at the acrosome phase, and finally the structure of the acrosome is completed at 
the end of maturation phase12.

Our current understanding of human reproduction is increasing thanks to the use of Assisted Reproductive 
Techniques (ART) and many studies aim to find a better way to select viable sperm16. Even though many aspects 
of sperm formation have been investigated, only few studies report quantitative measurements of sperm and its 
components, mainly focusing on the whole sperm heads17, 18. Since infertility is a common problem for men, it 
would be useful to devise standard parameters that could help in ART. A correct formation of the acrosome is 
crucial for a physiological reproduction capability and the quantification of the ratio between spermatides and 
spermatozoa can be a valid support for the correct prognosis of diseases linked to an impaired biogenesis of 
sperm cells.

Conventional strategies to study mammal spermiogenesis usually try to characterize specific morphological 
features supposed to play a key role in the development of the cells to spermatozoa with the aim of targeting them 
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for possible prognostic/therapeutic strategies. The morphological analysis of spermatozoa is usually performed by 
a trained eye, but due to the increasing amount of digital images stored, it is becoming important to develop auto-
matic techniques of classification and diagnosis. In this respect, there is still a pressing need to develop reliable 
automated method for cell morphology assessment. While objective tools for sperm motility assessment exist19, 
current automatic methods for sperm morphology are still not accurate and difficult to use20. Hence, subjective 
morphology sperm cell assessment is the standard in laboratories but results in large variability in the outcome. 
Machine learning-based intelligent systems could play a pivotal role to reach this goal. The method starts from an 
input feature matrix, including characteristic values of designated positive and negative samples, and self-trains 
the prediction models by learning the patterns in the feature matrix. The final goal is then to be able to automati-
cally classify a data set with unknown labels.

In this paper, we present a machine learning approach to classify in a quantitative and semi-automatic way 
important morphometric characteristics of mammalian acrosomes during spermatogenesis. We start by a 
three-dimensional digital reconstruction of confocal images of acrosomes from which we extract a discretized 
mesh representing the surface of each acrosome. We then compute a series of morphological parameters such 
as volume, surface and local curvatures. These morphological parameters represent the features that will then be 
analyzed through machine learning and principal component analysis. We illustrate the method by analyzing 
acrosomes from spermatides and spermatozoa, obtained from seminiferous tubules of young mice, which are 
known to have different shapes. The ground truth is established by direct classification by eye and the results 
compared with automatic methods based on machine learning.

Results and Discussion
Here we develop a new method combining computational science, quantitative biology and machine learning 
to classify acrosomes, distinguishing spermatides from spermatozoa in a semi-automatic way, obtaining robust 
quantitative morphological observables. To this end, we carry out a 3D reconstruction of the surface of acro-
somes of spermatides and spermatozoa from sexually mature healthy mice maintained in vitro for a few days. 
Quantifying differences in the fraction of spermatides and spermatozoa could be useful to detect in advance 
important pathological conditions related to sterility and have impact of ART17, 18. In order to maximize the 
number of acrosomes for the analysis, we carried out the 3D reconstruction of the acrosomes in cells extracted 
from seminiferous tubules and imaged at different times, either immediately (time T0) or maintained in vitro 
overnight (time T1). An analysis by electron microscopy shows that the overall architecture is preserved between 
T0 and T1 (Fig. 1) and we did not record any statistical difference in the quantitative parameters extracted from 
confocal images.

The detailed procedure for the reconstruction of the acrosomes surfaces, is discussed in the Materials and 
Methods section. Figure 2 shows two typical examples of meshes obtained by 3D reconstruction of the acrosomes 
membranes. The analysis of each acrosome yields a set of morphological characteristics (parameters): the acro-
some’s volume V, its surface area Σ, the sphericity Ψ, the average mean and Gaussian curvatures (M  and G , 
respectively) and their relative fluctuations (∆M

M
 and ∆G

G
, respectively). Averaging these morphological parameters 

(〈…〉) over the subpopulations of spermatids and spermatozoa gives the values reported in Fig. 3. Moreover we 
also report on top the p-values from a Kolmogorov-Smirnov test that considers the entire Spermatids and 
Spermatozoa cumulative distributions.

These data show that the acrosomes in spermatozoa are, in average, nearly 50% larger than those in spermatids 
and similar differences are recorded for the surfaces. This is not surprising since volume and surface are strongly 
correlated as illustrated in Fig. 4. In particular, volumes and surface follow the general law 〈Σ〉~〈V〉2/3 as expected 
based on simple dimensional considerations.

During spermiogenesis, acrosomes from spermatids are typically more spherical than those capping the sper-
matozoa nuclei. The spherical shape is probably reminiscent of an early vesicle form. We recover this obser-
vation by measuring the sphericity 1 of each acrosome in both populations. By definition, when Ψ = 1 the 
spherical shape is recovered, while smaller values indicate eccentricity and/or asymmetry of the surface. The 
mean values reported in Fig. 3 confirm indeed that acrosomes from spermatids tend to be more spherical than 
those from spermatozoa (see also the reconstructed meshes in Fig. 3). This difference is statistically significant 
(p = 1.06 × 10−6).

To further characterize the morphology, we have considered surface curvatures. The Gaussian curvature, 
defined in Eq. 2, is positive for spheres, negative for hyperboloids and zero for planes. Hence, the sign of the 
Gaussian curvature indicates if a surface is locally convex or saddle-like. We have measured the average Gaussian 
curvature G  per cell, as defined in Eq. 5. The average value 〈G〉 clearly shows that spermatids tend to have a more 
convex acrosome membrane as compared to spermatozoa (see Fig. 3, p = 1.14 × 10−2). The mean curvature, 
defined in Eq. 3, is zero for a plane, constant for a sphere and, more generally, it is positive for convex surfaces and 
negative for concave ones. Fig. 3 shows that, as in the case of Gaussian curvature, acrosomes from spermatids 
appear more spherical than those from spermatozoa (p = 4.15 × 10−2). In addition to the average values of 
Gaussian and mean curvature, we also consider their standard deviations which display significant differences 
between spermatids and spermatozoa (p = 2.19 × 10−6 for the Gaussian curvature and p = 4.64 × 10−3 for the 
mean curvature).

In summary, the quantitative morphological analysis reveals clear, statistically significant differences between 
spermatids and spermatozoa. These differences, however, arise at the population level and do not necessarily 
translate into a successful automated classification at the individual cell level. This is clear observing the plots in 
Fig. 4, where we report the bivariate relations and distribution for five morphological features. Notice that while 
these features all give rise to significant differences in the average parameters (Fig. 3), there is an important over-
lap in the individual values for spermatids and spermatozoa.
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To overcome these problems, we decided to investigate if machine learning and principal component analysis 
could be useful to provide reliable information at the single cell level and more importantly to build up a pre-
dictive semi-quantitative method. Fig. 4 shows that the data display more uniform-like densities in logarithmic 
space (lower-diagonal panels) rather than in the original linear space (Supplementary Fig. S1). Hence the SVM 
classification is performed in logarithmic space. Having more uniform densities over the feature space is desira-
ble for SVM classification, because penalties for misclassification are weighted according to their distance to the 
decision boundary.

Figure 5 shows the projection onto the first two principal components of the dataset, both in linear and loga-
rithmic space. Although certain differences in the distribution of values for spermatids and spermatozoa can be 
appreciated, clearly these differences are insufficient to define non-overlapping clusters. In other words, the two 
subpopulations cannot be distinguished by eye in a PCA projection of the 7-feature dataset. This is, indeed, what 
motivated us to use a SVM in the full 7-dimensional feature space.

Our results are summarized in Table 1. The values of the class accuracy (defined in Eq. 16) show that the SVM 
classification algorithm gets the correct answer in the 73% of trials (74% of trials for spermatids and in 69% of 
trials for spermatozoa acrosome, equivalent ROC AUC statistic 0.76). Although an average classification accuracy 
of 73% would not suffice for a potential automatized acrosome classification method, it is definitely beyond what 
a random or a constant classifier would achieve, marking the existing of a signal that could potentially be further 
exploited. In addition, it is interesting to notice the consistency by which cells are correctly classified/misclassi-
fied: 71% of all cells are correctly classified on at least 85% of the algorithm runs, i.e. ra = 0.85 = 0.71. If the value of a 
is raised to 0.99, then this figure drops only to 68%, i.e. ra = 0.99 = 0.68. In other words, there is a large subset of the 
data that is almost always correctly classified, and smaller subset of the data that is misclassified most of the time. 
This can be better seen in Fig. 6, where the cell accuracy has been used to color a scatter plot of the data. We have 
visually inspected the distribution of features, and found that misclassified cells lie in regions of mixed spermatid/
spermatozoa density, while correctly classified ones tend to be on regions of more unequal spermatid/spermato-
zoa density. Therefore, it appears there is no more obvious information left, and further exploiting classification 
results to enhance the SVM would result in over-fitting.

The choice of SVM among other classifiers responds to its simplicity and the fact that it handles well class 
imbalance. In particular, we compared our result with those obtained with a Random Forest (RF) classifier using 

Figure 1. Transmission electron micrograph of mouse seminiferous epithelium. Adult testis tubules obtained 
as described in Materials and Methods section were immediately fixed (time T0) or after 1 day in culture (time 
T1). (a,b) At T0 a well preserved tubular basal compartment of a stage VII tubule shows normal Sertoli cells 
(S), spermatogonia (Sg), primary spermatocytes (Sc) and spermatids (Sd). x 3500–4800. (c,d) At T1 the tubular 
basal compartment shows some signs of cellular degeneration (*). x 4800.

http://S1
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either class weights or downsampling to correct for class imbalance. In the first case, we obtain a 92% accuracy for 
spermatids, but only 27% for spermatozoa. In the second case, we achieve 69% accuracy for spermatids and 57% 
for spermatozoa. Therefore, SVM gives better results than RF, probably due to how class imbalance is handled.

In conclusion, we have proposed a general strategy to classify acrosomes from spermatides and spermatozoa 
according to their morphological features. The methods starts from a three dimensional reconstruction of the 
surface of the acrosome from confocal images and extracts a set of morphological parameters from the recon-
structed surface. These parameters are then analyzed by machine learning and compared with the ground truth 

Figure 2. Acrosomes surface 3D reconstruction. Panel (a): the round spermatid acrosome is singled out 
within one of the fields of a 3D confocal stack of the experimental slide. The spermatid surface is identified 
thanks to the SP56 marker of its acrosomal matrix (in green). Panel (b): the Active Contour plugin reconstructs 
the acrosome mesh by furnishing the closest three dimensional segmented surface to the acrosome bilipidic 
membrane. For a 3D rendering of the acrosome mesh see Supplementary Video S1. Panel (c): acrosome 
mesh and the local Gaussian curvature superimposed on each mesh node. The color code is from blue (low 
Gaussian curvature) to red (high Gaussian curvature). Panel (d): acrosome mesh and the local Mean curvature 
superimposed on each mesh node. The color code is from blue (low Mean curvature) to red (high Mean 
curvature). Panel (e): the spermatozoon acrosome is singled out within the confocal stack field, and identified 
thanks to the SP56 marker of its acrosomal matrix (in green). Panel (f): the Active Contour plugin reconstructs 
the acrosome mesh by furnishing the closest three dimensional segmented surface to the acrosome bilipidic 
membrane. Notice the typical harpin shape. For a 3D rendering of the acrosome mesh see Supplementary 
Video S2. Panel (g): acrosome mesh and the local Gaussian curvature superimposed on each mesh node. Color 
code is as in panel (c). Panel (h): acrosome mesh and the local Mean curvature superimposed on each mesh 
node. Color code is as in panel (d).

Figure 3. Statistical analysis: Average values. Average values of the morphological parameters for spermatids 
(green) and spermatozoa acrosomes (red). We also report the p-value from a KS test on top of each 
morphological parameter.

http://S1
http://S2
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provided by a direct assessment by eye. The method we propose could be helpful to assist the analysis of sper-
matozoa during spermiogenesis, especially in presence of large quantities of data where direct classification by 
eye is not feasible. Future studies along these lines should aim at finding automated tools to distinguish between 

Figure 4. Features plot. Overall view of the distribution of five morphological features (G , ΔG/G , Σ, V, Ψ) and their 
bivariate relations. Diagonal panels: normed histograms  (semi-transparent filled bins) and kernel density estimates 
(solid colored lines) corresponding to the log-transformed data. Lower-diagonal panels: scatter plots in logarithmic 
coordinates. Notice that the x-axes are shared within columns. The diagonal panels are in units of density (not shown).

Figure 5. PCA projection. Projection of the seven morphological features onto its two first principal 
components (see Methods section), computed both in linear space (left panel) and in logarithmic space (right 
panel). Although some differences between spermatids and spermatozoa are apparent, no clear clusters arise.
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a normal cap and a cap with distortions of outer and inner acrosomal membranes, identify damages of the acro-
somal matrix or to estimate the fraction of sperm cells with loosen cap after freezing-thawing. This could help 
solve the relevant clinical issue of quantifying the percentage of sperm cells with normal acrosome and therefore 
assess fertility.

Methods
Animals and culture medium. Sexually mature CD1 male mice (four-five months) were purchased from 
Charles River (Calco, Italy). Mice were kept in controlled conditions and all procedures were conformed to Italian 
law (D. Lgs n. 2014/26, implementation of the 2010/63/UE) and approved by the Animal Welfare Body of the 
University of Milan and by the Italian Minister of Health.

Isolation of single cells from testis. Testes were isolated and decapsulated in 0.1 M Phosphate Buffer. The 
seminiferous tubules were gently placed onto a small cube made of 1,5% agarose and soaked in culture medium 
for more than 24 h to replace water. The amount of medium was adjusted in order to cover half to four fifth of the 
height of agarose cubes. Tubules were maintained in incubator at 34 °C, 5% and controlled humidity overnight 
in the following culture medium: RPMI (Euroclone), 10% Fetal Bovine Serum (FBS) (Euroclone), 2 mM Stable 
L-glutamine (Euroclone), antibiotic antimycotic solution (A5955, Sigma-Aldrich). Seminiferous tubules were 
picked up from agarose cubes (Sigma) and fixed in 2% paraformaldehyde dissolved in PBS pH 7.2–7.4 for 10 min. 
A single fixed tubule was laid down onto a slide, covered with a coverslip and a gentle pressure was applied in 
order to allow cells to come out from the seminiferous tubule. Slides were then frozen in liquid nitrogen for fur-
ther analyses.

Acrosome staining. The slides were rinsed with ice-cold phosphate buffered saline (PBS) 1X for 5 min 
at room temperature (RT), fixed with cold 100% methanol for 15 min at −20 °C then incubated with 10% 
goat-serum in PBS for 1 h at RT. The slides were incubated with anti-sperm Protein sp56 antibody (7C5; 1:150 
Life Technologies-MA1-10866) overnight at 4 °C and then incubated with anti-mouse IgM/G/A (H + L) 488 sec-
ondary antibody (1:250 Millipore-AP501F) for 1 h at RT. The slides were mounted with Prolong Gold Antifade 
reagent with DAPI (Life Technologies-P36935). At least 60 stack images were acquired with Leica SP2 laser scan-
ning confocal microscope (63X).

Transmission electron microscopy. The seminiferous tubules were fixed in loco with 2,5% glutaraldehyde 
(electron microscope grade) in 0,1 M phosphate buffer (PB) pH 7.2 for 3 h at room temperature. The tubules were 
then mounted between two layers of 1,5% agarose (Sigma) of about 2 mm in height, which was cut into small 
cubes 2 × 2 × 3 mm in size and postfixed in 2% osmium tetroxide in 0,1 M PB overnight at 4 °C. The samples were 

AC r0.85 r0.99 ROC AUC

Spermatids 0.74 0.72 0.70

Spermatozoa 0.69 0.69 0.63

All cells 0.73 0.71 0.68 0.76

Table 1. Summary of results of the SVM classification: class-averaged accuracy AC (Eq. 16); ratio of cells with 
classification accuracy equal to or greater than 0.85 and 0.99, r0,85, r0,99; and area under the curve for the receiver 
operating characteristic (ROC AUC). The classification accuracy of each cell is defined as the ratio of times it is 
correctly classified, over the different runs of the algorithm (see (Eq. 17)).

Figure 6. SVM analysis. Left panel: spermatids acrosomes (green dots) and spermatozoa acrosomes (red 
dots) plotted in the Volume-Sphericity plane. Right panel: same data, colored according to the value of the 
classification accuracy Ac (Eq. 16) obtained with the SVM: spermatids are colored from totally white (0% 
accuracy) to totally green (100% accuracy), while spermatozoa are colored from totally white (0% accuracy) to 
totally red (100% accuracy). Notice that a perfect classifier would render both panels identical. The two small 
images above the colorbar are example confocal images (a red coloring filter was applied to the spermatozoa 
image for clarity). The small triangular markers in the colorbar mark the class-level accuracy values (see 
Table 1).
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dehydrated in a graded ethanol series, and embedded in epoxy resin. Semithin section (1 μm) were stained with 
toluidine blue in borax and examined by light microscopy. Ultrathin section (70 nm) were cut using a diamond 
knife on a Reichert Ultracut ultramicrotome, mounted on a Cu/Rh grids (200 mesh), contrasted with uranyl ace-
tate and lead citrate, examined and photographed with a Zeiss 902 transmission electron microscope operating at 
80 kV. The exposed films were developed according to common photographic techniques, captured with an Epson 
V700 Photo scanner with a final resolution of 600dpi and appropriately calibrated for contrast and brightness (see 
Fig. 1).

3D acrosome reconstruction by immunofluorescence images of sp56. A 3D reconstruction of the 
acrosome obtained from confocal images of sperm cells stained with anti-sp56 has been done with ICY software 
tools (http://icy.bioimageanalysis.org/). Briefly, confocal stacks (at least 80–90 stacks) were first pre-processed to 
extract the individual cells images. Images were picked in diverse fields of the slide, to consider all the different 
stages that are present in a single portion of the tubule and not to overestimate the presence of cells in a particular 
stage of differentiation. A minimum of twenty cells were scored and analyzed for each slide. Two subpopulations 
in the seminiferous tubules were considered: round spermatids and spermatozoa. The formers represent the early 
stage of spermatogenesis and are identified by the presence of one or two spots of condensed heterochromatin in 
a spheroidal nucleus. The latters show a compact chromatin, an acrosome with hooked shape and the presence of 
the flagellum, according to previous paper1, 7. Cells were singled out by tracing a region of interest (ROI) around 
every acrosome in each subpolpulation. Subsequently this ROI has been cropped by using the Fast crop tool. 
Hence, our analysis could take advantage of single high resolution images, for any acrosome under consideration. 
The 3D ROI of individual acrosomes were also refined by using the HK-Means plugin (http://icy.bioimageanal-
ysis.org/plugin/HK-Means). This method performs a N-class thresholding based on a K-Means classification of 
the image histogram. The acrosome membrane reconstruction has been obtained by the segmentation technique 
implemented in the 3D Active Contour plugin (http://icy.bioimageanalysis.org/plugin/Active_Contours)21. The 
algorithm at the basis of this plugin performs three dimensional segmentation and tracking, using a triangu-
lar mesh optimized over the original signal as a target. In Fig. 2 and in the movie M1 (see the Supplementary 
Informations) the 3D reconstruction of a typical spermatid and a spermatozoa acrosome are displayed. The 
three dimensional renderings of the meshes (in Fig. 2 and movies (Supplementary Video S1 and Supplementary 
Video S2) were performed thanks to Paraview (http://www.paraview.org/).

Single cell data analysis. Once each three dimensional acrosome mesh was reconstructted, we proceeded 
to measure its cell volume (V) and surface area (Σ) using Meshlab tools (http://meshlab.sourceforge.net/). The 
acrosome sphericity is calculated according to the definition

π
Ψ =

Σ
V(6 )

(1)

1/3 2/3

The local Gaussian and Mean curvatures were calculated by a custom python code, which massively makes 
use of vtk libraries (http://www.vtk.org/). Typical images of a spermatid and spermatozoon acrosome mesh, with 
superimposed local curvatures (blue-to-red) color maps, are reported in Fig. 2(c,d) and Fig 2(g,h) for Gaussian 
and mean curvature respectively. We label every node on the single mesh by i (with 1 ≤ i ≤ N), therefore the local 
mean and Gaussian curvature fields on each node are denoted as Mi and Gi respectively. The local curvature of 
a surface entails the notion of principal curvatures, k1, k2, defined as the smallest and largest one dimensional 
curvatures on a point. The Gaussian curvature is defined as

=G k k (2)i
i i
1 2

where the index i runs over the nodes of an acrosome mesh (see Fig. 2(c,g)). The mean curvature instead is 
defined as the average of the principal curvatures:

=
+M k k
2

, (3)i

i i
1 2

and has the dimension of length −1. The averaged value of the Mean and Gaussian curvature on the acrosome 
surface are defined as

= ∑ =M M
N (4)
i
N

i1

and

= ∑ .=G G
N (5)
i
N

i1

Besides the average local curvature per cell (Eqs 4 and 5 respectively), we also define relative fluctuations of the 
local mean curvature of individual acrosomes as

http://icy.bioimageanalysis.org/
http://icy.bioimageanalysis.org/plugin/HK-Means
http://icy.bioimageanalysis.org/plugin/HK-Means
http://icy.bioimageanalysis.org/plugin/Active_Contours
http://M1
http://S1
http://S2
http://www.paraview.org/
http://meshlab.sourceforge.net/
http://www.vtk.org/
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∆
= ∑ −

−
=M

M
M M

N M
( )

( 1)
,

(6)
i
N

i1
2

2

and similarly for the Gaussian curvature

∆
= ∑ −

−
=G

G
G G

N G
( )

( 1) (7)
i
N

i1
2

2

Statistical analysis. The statistical analysis is performed by averaging a set of 7 morphological parameters 
(V, Σ, Ψ, M , G , ∆M

M
, ∆G

G
) over the statistical ensemble of the spermatids and spermatozoa acrosomes subpopula-

tions composed by 158 spermatids and 51 spermatozoa. The statistical significance was evaluated using 
Kolmogorov-Smirnov tests as implemented in the python library scipy (https://www.scipy.org/). Our code is 
available at https://github.com/ComplexityBiosystems/.

Principal Component Analysis (PCA). We use Principal Component Analysis (PCA)22 as implemented in 
the open-source python library scikit-learn (https://scikit-learn.org/stable). PCA is very popular visualization and 
dimensionality-reduction technique based on the singular-value decomposition of the features-samples matrix. 
The decomposition entails a new space of uncorrelated features, where each new feature or principal component is 
a linear combination of the original features. The principal components are of interest because (i) they are uncor-
related and (ii) they are such that the first principal component accounts for as much variability of the original 
data as possible; the second one accounts for as much of the remaining variability as possible, and so on. In this 
way, projecting the data onto the first few principal components we preserve most of the variability of the data 
while keeping the number of features low. In this manuscript we use PCA as a visualization technique, to discard 
the existence of “obvious” clusters in the dataset. By projecting the data onto the two first principal components, 
we obtain the 2-dimensional scatter plot that better represents the original data, in terms of explained variability.

Support Vector Machine (SVM). We first give a brief mathematical introduction to the algorithm behind 
SVM, and then discuss the implementation to our problem. SVM are a set of widely-used machine learning algo-
rithms, highly popular for their simplicity and the fact that they yield good results in many cases. Here we use its 
simplest version, a SVM with a linear kernel. In essence, the algorithm boils down to finding the hyper-plane h 
parametrized by →w b, ,

= → ∈ → ⋅ → + =h x w x b: { : 0} (8)d

that better separates the data →xi  into the known classes yi ∈ {−1, 1}. In mathematical terms, the problem is cast 
into an optimization problem with constrains, which is easily solved via Lagrange multipliers. In particular, one 
needs to find →w b, , ξi that minimize

∑ξ→ +w C1
2 (9)i

i
2

under the constraints that

ξ→ ⋅ → + + ≥ ∀y w x b i( ) 1 (10)i i i

where ξi ≥ 0 are auxiliary variables that allow for misclassification (a penalty proportional to the distance to the 
decision boundary is set for misclassified points), and C sets a global weight for the misclassification penalty. We 
refer the reader interested in mathematical details to22.

The hyperplane h is determined using only a subset of the data, called the training set, and then the labels of 
the rest of the data, called test set, are predicted as follows:

≡ → ⋅ → +y w x bsign( ) (11)ts

where y is the predicted label of a point →xts in the test set. There are many, more involved strategies to split the data 
into different sets for training and prediction. The interested reader will find good introductory material in ref. 22 
and references therein.

Our data is given by the seven morphological features of the acrosomes and the acrosome subpopulation to 
which each cell belongs (Spermatids/Spermatozoa). That is, each cell is represented by a pair (→x y,i i) with → ∈xi

7 
a vector containing its morphological information, and yi ∈ {−1, 1} a subpopulation class label, where −1 encodes 
for “Spermatid” and 1 for “Spermatozoa”. We use the python implementation of Support Vector Machines pro-
vided by the machine-learning library scikit-learn (https://scikit-learn.org/stable). In particular, we use the func-
tion “sklearn.svm.SVC()”. Given the difference in sample size of the two groups (158 spermatids and 51 
spermatozoa, see the Materials and Methods), it is important to set the keyword “class_weights” to “balanced”, 
which effectively sets statistical weights in the computation of the error term inversely proportional to the class 
observed frequencies. We use 10-fold cross validation, which means that, for each run of the algorithm, the data 
is randomly split into ten groups: nine are used to train the SVM, i.e. to determine the parameters →w b,  of the 
hyperplane, and one is used for prediction. This is repeated ten times, one for each group, so that in the end each 

https://www.scipy.org/
https://github.com/ComplexityBiosystems/
https://scikit-learn.org/stable
https://scikit-learn.org/stable
http://sklearn.svm.SVC
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datapoint has received one predicted label. Given the stochasticity in splitting the data, we average results over 
Nr = 1000 runs of the algorithm. Increasing Nr does not improve the results.

In summary, for each run of the algorithm, the output is a predicted label “Spermatid” or “Spermatozoa” for 
each of the 209 acrosomes, which we then compare with the ground truth. If the predicted label corresponds 
to the true nature of the acrosome, we assign a binary value 1, otherwise we assign 0 if it is misclassified. Thus, 
we obtain a binary matrix Bij of size 209 × 1000 where each row represents a cell and each column a run of the 
algorithm.

We define the cell accuracy ai as the ratio of the times a specific cell i was correctly classified,

∑= .
=

a
N

B1
(12)

i
r j

N

ij
1

r

We then define the average class accuracy AC as the average of ai over all cells i of a given class C, where C can be 
either spermatids or spermatozoa,

∑=
∈

A
C

a1 ,
(13)

C
i C

i

and |C| is the size of the acrosomes subpopulations, i.e. |C| = 158 for spermatids and |C| = 51 for spermatozoa. 
Notice that AC corresponds also to the average over algorithm runs j = 1…Nr of the class accuracy,

∑=
∈

A
C

a1 1
(14)

C
i C

i

∑ ∑=
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





∈ =C N
B1 1

(15)i C r j
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
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


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.

= ∈N C
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(16)r j
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i C
ij

1
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Finally we define the quantity ra as the ratio of cells above certain accuracy a in a given class C, i.e.

=
∈ >r i C a a

C
{ , }

(17)
a

i

For instance, if one takes a value of a = 0.99, then ra=0.99 would indicate the (relative) number of cells that 
would be correctly classified with a probability equal to or higher than 99%.

All the custom codes codes are available at https://github.com/ComplexityBiosystems/.
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